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Abstract 

Climate change poses a severe threat to agricultural sustainability, particularly in water-scarce regions such 

as Multan, Pakistan, which receives an annual average rainfall of only 186mm and experiences frequent 

drought conditions (Pakistan Meteorological Department, 2022). The increasing depletion of groundwater 

resources further exacerbates agricultural challenges in the region. It is a rising threat to agriculture, a 

fundamental component of food security worldwide, and due to this, new ways of formulating crop estimate 

models are needed. Most traditional approaches to forecasting ATTR might not accurately capture the 

complex and non-linear or even non-additive mechanisms that connect climate parameters and crop yields. 

In this work, we employ Long Short-Term Memory (LSTM networks) a state-of-art deep learning method to 

forecast crop yields based on temperature, rainfall, and crop production data. As a result, the LSTM model 

can process the sequential data and identify the temporal dependence pattern as the best model for this task. 

The main input data included climate and yield data from a particular year in a specific region and some 

preprocessing was done to handle missing values, scale inputs, and group rainfall data. The model had a 

MAPE of 5.36%, an MAE of 1136.70, and an RMSE of 1136.70 giving the model a prediction accuracy of 

94.64%. This work shows the efficiency of the proposed model and confirms that this approach is more 

effective than traditional statistical methods. These predictions are highly accurate and provide valuable 

information for different users including farmers, policy-makers, and researchers. This work elucidates how 

LSTM-based models can help solve the future challenges of agricultural management and production. When 

able to yield reliable predictions of the yields, such models can also help in proper resource planning, 

managing the effects of climate change, and improving food security all over the world. As a result, it is 

evident that machine learning critically occupies the subject area in constructing a long-lasting agricultural 

future resistant to dramatic changes. 

Keywords: Deep Learning; Long Short-Term Memory (LSTM); Crop Yield Prediction; Climate 

Change; Food Security analysis

1. Introduction

Multan, a key agricultural hub in Pakistan, is 

categorized as a semi-arid region with limited water 

availability for crop production. The city receives an 

average annual rainfall of 186mm, which is 

significantly lower than the minimum 500mm 

threshold required for sustainable rain-fed 

agriculture[1]. Additionally, erratic monsoon 

patterns and prolonged dry spells have intensified 

water stress, leading to declining groundwater levels 

and increased reliance on irrigation. According to 

the [2], Multan has experienced at least five drought 

years in the past two decades, further highlighting 

the vulnerability of its agricultural sector to climate 

variability. Agriculture has proved to be central to 

the growth of human societies as a means of 

producing food[3], providing a medium for 

exchange and, in fact, as the base upon which 

societies have depended for sustenance. Since the 

beginning of agriculture, people have used natural 

philosophies to dictate the climate and habits of the 

environment to know when and where to plant 

crops, when to tend to those plants, and when to 

harvest them[4]. Thanks to modern agriculture, 

technology has fitted the system of farming to be 

more productive. However, it is critical to 

distinguish between the tremendous growth of 

agricultural productivity and stability of harvests in 

recent decades and the basic fragility of agricultural 

production systems that hinges on the ability to 

adapt to environmental conditions[5], driven mainly 

by weather factors and changes in climate and 

season. These conditions have a great impact on the 

growth and yield of crops and their related farming 

criteria, which in turn have dynamic impacts on the 

farmer’s economy, global food supply, and the 

sustainability of the environment. 

The problem of forecasting regarding yields 

for crops is further complicated when factors like 

temperature and rainfall are factored into the mix 
within the climate system[6]. Weather conditions 

are a critical consideration within agriculture since a 
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little shift in environmental conditions can trigger a 

massive difference in yields[3]. For example, 

unfavorable temperature levels may harm plants at 

certain development phases or irregular rainfall 

would cause either drought, which is destructive to 

crop production. In addition, the time of occurrence 

of rainfall and/or temperature changes is extremely 

significant to crops[7]; for instance, drought at 

critical development phases such as flowering or 

fruiting greatly reduces crop yield potential, while 

excess rainfall can either retard crop maturity or 

cause crop diseases. 

The conventional yield prediction methods 

that mainly use historical records may not give a 

proper on more intricate interactions between 

climate and crops. This is where modern 

advancements in deep learning (DL) and artificial 

intelligence (AI)[8] Help, and become useful. In 

recent years, deep learning techniques, especially 

LSTM, have attracted a lot of attention in GWS due 

to massive data inputs and other hidden patterns that 

cannot be seen easily by even an analyst. Of these 

techniques, LSTM[9] Which is a specific type of 

RNN that has developed into a powerful tool for 

time series prediction. Problems where the sequence 

of data points is critical include the use of LSTMs in 

weather prediction and in determining agricultural 

yield[5]. 

The notion of applying deep learning 

techniques, LSTMs in this case, to attempt to 

forecast crop yields based on historical climate data 

is unique and timely in light of climate change. And 

so, with global temperatures continuing to climb and 

weather[9]. Becoming more unpredictable, it 

remains a concern as to how farmers can continue 

relying only on traditional methods of forecasting. 

AI and deep learning could play significant roles in 

the betterment and improvement of agricultural 

forecasting systems[10] and assist farmers in 

overcoming these challenges since it would help 

them make precise decisions regarding resources 

and management in a way that enhances the 

qualities of crops that would help them withstand 

the change in climate conditions[4]. This paper 

investigates the ability of LSTM networks[9] in 

predicting crop production based on temperature, 

rainfall, and crop production data from past seasons. 

Based on this data, we want to answer the question 

of whether an LSTM model[9] provides better and 

more accurate predictions than basic forecasting, 

which is valuable for farmers, decision-makers, and 

researchers. 

The purpose of this research is to develop a 

forecasting model that incorporates past 

temperature and rainfall data over several years, as 

well as crop production data, to predict future crop 

production.[5]. This model could assist farmers in 

establishing a better way of predicting crop yields 

for the next season in case of bad planting seasons, 

making good planning right from planting seasons, 

especially concerning the use of water and fertilizers 

during planting for increased crop yields[4], and 

also assist farmers’ crop selection as well as market 

segmentation and strategies. Furthermore, such a 

model could be used for more precise yield 

prediction, which would decrease food waste and 

increase overall food security, making the 

agricultural industry more sustainable[4]. 

This research is a small step, but a noteworthy 

one, in an attempt to reinvent the prediction of 

agriculture-related factors with machine learning 

systems[4]. The findings of this study also focus on 

improving the predictions of crop yields to advance 

the intelligent management of farming activities, as 

they contribute to food security under climate 

change[11]. In conclusion, this work aims to show 

how incorporating such sophisticated machine 

learning models like LSTMs with conventional 

techniques in agriculture can help improve the 

current agricultural system for the challenges of the 

21st century[10]. It is difficult to overemphasize the 

importance of agriculture[12], as this sector has 

always been the foundation of human development, 

meeting the most basic human needs, such as food, 

materials for clothing, and job opportunities for 

billions of people globally[13]. It has always been 

the traditional way of producing food where farmers 

till the soil based on cycles, rainfall, and climatic 

conditions in a given region. Even with the 

developments in technology and efficiency in 

planting and dealing with crops, climatic changes 

remain one of the biggest challenges for 

farmers[14]. Since climate can significantly impact 

crop yields and production, fluctuations in 

temperature, rainy season, or occurrence of natural 

disasters such as droughts, floods, and storms pose 

a significant risk towards food insecurity, financial 

loss, and social unrest[9]. 

Deep learning (DL) and artificial intelligence 

(AI) [8] In the recent past, they have been 

considered to be very promising technologies that 

might be useful in altering how agricultural results 

are predicted and handled among the many DL 

methodologies. Deep learning algorithms [15] 

particularly the LSTM networks have been reported 

to offer remarkable performance in time series 

prediction. As opposed to non-recurrent machine 

learning models, LSTM is designed to handle 

sequential data in which the arrangement of the 

numbers matters. This makes them particularly 

useful when the data we are trying to predict, in this 

case, weather patterns and crop yields, tend to have 
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temporal dependencies. These models can learn 

from the past to predict the future, which makes 

them very useful when it comes to trying to predict 

how much yield it will be possible to get from the 

next crop season, depending on the temperature, 

rainfall, and crop production[4] That has been 

recorded in the past. Many papers have been written 

regarding the application of machine learning for 

yield prediction for crops. Weather observation, soil 

type, and prior year production data have been used 

with regression models, S-V machines, and decision 

trees to predict crop yields[4]. Recently introduced 

deep learning architectures, such as LSTM 

networks, are preferred owing to the ability of the 

models to capture long-term sequences in sequential 

data processing. Earlier studies have shown that 

LSTM models can provide consistent estimates of 

crop yields[3], where weather patterns show 

temporal dependencies. Nevertheless, there is a 

research gap in the application of both temperature 

and rainfall data, besides crop yield data, for training 

LSTM models[9]. 

This study explores the potential of LSTM 

networks in predicting wheat yield based on 

temperature, rainfall, and production history in 

Multan, Pakistan. Wheat was selected because it is 

the most cultivated crop in the region, contributing 

significantly to Pakistan’s food security and 

economy. Given the increasing climate variability, 

accurately forecasting wheat yield can help farmers 

and policymakers make informed decisions 

regarding irrigation, fertilization, and resource 

allocation[8]. 

2. Methodology  

2.1 The Study Area 

This research is focused on Multan, which is 

an agricultural area in Punjab, Pakistan that flattens 

productive fields and contributes approximately one 

of the largest portions of the agricultural production 

of the country. Multan, situated on the left bank of 

the Chenab River, is known for its hot semi-arid 

climate; scorching summer, moderate winter, and 

average annual rainfall is about 186mm, with the 

monsoon season having occasional rainfall. Multan 

has always been considered the agricultural hub of 

Pakistan, producing basic food crops like wheat, 

cotton, and sugarcane, especially in the world-

renowned mango production areas. As with other 

areas of the country, Multan has also been the victim 

of a changing climate, concerning variation in 

temperature and rainfall. The uniqueness of these 

conditions, being climate sensitive, makes Multan 

important since, through the study that shall be 

conducted on the available data concerning weather 

conditions and the yield of crops, it will be 

established how to make the agricultural resources 

stronger and the resource management systems 

more effective in the region. 

2.2 Data Collection and 
Preprocessing 

Thus, the source of information for the study 

was three data sets that gave an overall account of 

climatic and agricultural patterns in the Multan 

region with special reference to yield. Mean 

maximum and minimum temperature information 

was obtained annually from the years 2007 to 2022. 

These indicators were chosen because they have a 

critical function in the growing cycles of crops, 

including flowering, fruit formation, and crop yield. 

 

Fig. 1: Yearly averaged temperature and rainfall from 2007 to 2018 
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Fig. 2: Time series temperature and rainfall from 2007 to 2018 

Rainfall data was categorized into two types: 

rainfall data from 2007 to 2022 including mean 

annual rainfall, which was used for comparing the 

overall availability of water for agricultural 

activities, and monthly rainfall data from 2018 to 

2022. The monthly data proved especially useful in 

determining how rainfall or its absence made its 

biggest impact within the crop season.

 

Fig. 3: Monthly average Rainfall trends from 2018-2022 

 

Fig. 4: Monthly Rainfall Trends (2018-2022) 
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Besides, production information in tons of 

annual crop yield from the years 2008-09 to 2022-

23 was collected. Wheat was selected as the focus 

crop due to its economic importance and extensive 

cultivation in Multan, where it covers a significant 

proportion of the total agricultural land. 

Before feeding it to the training set and the 

test set, slight preprocessing was done to strip the 

data clean of any inaccuracies. Most values in the 

rainfall data set were imputed to zero since gaps in 

the data would mess up the entire analysis. Data that 

was in alphabetical order, whereby others replaced 

some values due to non-completion of the 

questionnaires, were normalized. The parameter of 

rainfall was in terms of monthly distribution, while 

the output was required to be in terms of annual 

accumulation, thus, the monthly numbers were 

rolled up into annual accumulation for comparison 

with the crop yields. The monthly data was, 

however, preserved as the need arose for finer 

analysis. Additionally, wheat is susceptible to 

climate variations, making it an ideal crop for 

studying the impact of temperature and rainfall on 

yield prediction. This dataset quantified the 

agricultural yield of the region's main crops and was 

the forecast's dependent variable. The data were 

collected from the Bureau of Statistics of the Punjab 

Government and other publicly available resources 

[16]. These records were preprocessed using Min-

Max normalization before being input into the 

LSTM model. Data cleaning involved handling 

missing values, ensuring consistency, and 

structuring the data for time-series analysis. The 

datasets were first cleaned and normalized as 

mentioned earlier, and then merged based on a 

common “Year” variable, and this merged dataset 

comprised temperature, rainfall, and 

 

Fig. 5: Production & Total over Years 

 

Fig. 6: Time Series of Crop Yield and Area Sown 

crop yield data. This integration made it possible to 

capture all influencing factors to support analysis 

and modeling. Before feeding it into an LSTM 

model, normalization was done using the Min-Max 



Pak. J. Engg. Appl. Sci. Vol. 33, Special Issue July, 2025 

12 

Scaler to get the features in the range of 0-1. This 

step was crucial to render the model efficient and 

avoid distorting the values that have large numeric 

differences, such as annual rainfall values, while 

comparing with temperature values. Finally, the 

data was converted into the time series format 

required by the LSTM model. This structuring 

entailed using data from the three prior years as 

independent variables to forecast the yield of crops 

in the subsequent year. For example, the data on 

temperature, rainfall, and crop yield collected 

between the years 2007 and 2009 were employed in 

the study to predict the crop yield in the year 2010. 

This approach allowed the model to capture 

temporal dependencies, which are important to 

understanding the functioning of agricultural 

systems. Such a careful approach allowed for not 

only data cleaning and normalization but also the 

structuring of the data in a way that can take 

advantage of the LSTM’s inherent strengths, thus 

making it well suited for yield prediction problems. 

Although the data on soil moisture content is 

extremely essential for estimating a crop’s yield, the 

available datasets for Multan did not include soil 

moisture data for an extended period. The attempts 

to acquire remote sensing soil moisture data were 

capped by poor temporal coverage and low spatial 

resolution. Thus, this study was limited to the use of 

temperature and rainfall as the main climate 

indicators, which is why future work needs to focus 

on including trustworthy soil moisture datasets 

when they are made available. 

 

Fig. 7: LSTM Deep Learning Model Methodology 

Diagram 

The percentage of land cultivated out of total 

available land has declined progressively over time, 

as suggested in below Fig. 8. The reason may be 

urbanization, land degradation, or policy driven land 

redistribution. 

2.3 Model Architecture 

The model architecture used in this study was 

drawn from Long Short-Term Memory (LSTM) 

networks, which are ideal for time series forecast. 

LSTMs are a kind of recurrent neural network 

(RNN) that has the capability of modeling and 

learning dependencies or correlation within 

sequential data hence can be used for making crop 

yield prediction based on climatic and agricultural 

history data. The first layer of the model was the 

LSTM layer with 50 units. This layer was intended 

to recognize multivariate temporal dependencies in 

the input signals, with a certain emphasis placed on 

the previous temperature and rainfall data. The 

activation function used for this layer was ReLU 

(Rectified Linear Unit) since it is very useful when 

addressing problems such as the vanishing gradient, 

which is prominent in deep networks.  

A dropout layer followed the first LSTM 

layer with a rate set at 20% to minimize overfitting. 

A Dropout technique is applied to randomly remove 

partially the neurons during the training stage to 

reduce over-dependency on the training data and to 

generalize the model. The second LSTM layer also 

included 50 units and, similarly to the first LSTM 

layer, the return sequences were set as False. This 

configuration makes it possible for the second layer 

to output a single real value, which is the final 

predicted crop yield, not a sequence. This was done 

because the goal of the model was to give a 

prediction of the yield of the next year’s crop by 

learning the patterns set by the input. Another 

dropout layer was added after the second LSTM 

layer to mitigate overfitting, set at a rate of 20%. 

This layer made the learning process more 

stochastic so that the model could generalize better 

to unseen data. 

Last, in which fully connected layer 

consisting of one neuron is added to the model. This 

layer was tasked with producing the values of the 

various crop yield forecasts. Fully connected layers 

are the layers where each neuron is connected to 

each neuron of the preceding layer. In this case, it 

returned the result of the model in the form of a 

single value of crop yield for the given year. As for 

the optimizer to fine-tune the model, the Adam 

optimizer was chosen since it is among the most 

efficient ones for training deep-learning models. 

The loss function selected for the model was MSE, 

suitable for linear regression models and which 
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Fig. 8: Percentage share of cultivated area over time, showing trends in land utilization 

 

Fig. 9: Model Sequential

evaluates the mean of the squared differences of the 

differences between the predicted and actual values. 

For assessment, Mean Absolute Error (MAE) was 

employed, as it calculates the sum of the absolute 

value of the differences in predicting and actual 

values divided by the sizes of the samples, which 

gives a more descriptive measure of the 

performance of the model. Using this architecture, 

the required LSTM networks for time-series 

prediction of crop yields were enhanced combined 

with the dropout, which helps the model learn from 

the data sets and does not overfit the data the model 

is trained on. 

2.4 Model Training and Evaluation 

The dataset used in this study was split into 

two parts: a training set (80 percent of data) and a 

validation set (20 percent of data)>. The data into 

which the model was trained was obtained from the 

training set, and the model was tested on the testing 

set. The size of the batches was set to 16, which 

means the number of samples that are processed in 

parallel in one pass forward/backward. The model 

was trained for 50 epochs thus the model repeated 

the entire process of going through the training data 

and modifying its weights 50 times. 

To, evaluate the model’s performance, two 

common metrics were used: Mean squared error 

(MSE) and mean absolute error (MAE). The 

performances of these metrics are based on the gap 

between the predicted and the actual crop yield 

values to determine the accuracy of the model. 

Mean Squared Error (MSE) is calculated using 

the following formula: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1    (1) 

Where: 

• n is the number of test samples 

• 𝑦𝑖 is the actual value of the 𝑖-th sample 

• 𝑦̂𝑖 is the predicted value for the 𝑖-th sample 

MSE is particularly useful for identifying 

large errors, as it squares the difference between the 

actual and predicted values, making larger errors 

more penalized. 
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Mean Absolute Error (MAE) is calculated using 

the following formula:  

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑛
𝑖=1   (2) 

Where: 

• n is the number of test samples 

• 𝑦𝑖 is the actual value of the 𝑖-th sample 

• 𝑦̂𝑖 is the predicted value for the 𝑖-th sample 

MAE offers a very clear interpretation of the 

mean of the absolute difference between the actual 

and predicted values without making big errors 

larger than the case with MSE. 

Throughout the model training process, both 

MSE and MAE were observed, thus at the end of the 

testing section for the model, we noted extremely 

low figures for MSE and MAE. This indicates that 

both models were effective in estimating crop yield 

and that the estimated values are well approximated 

by the actual crop yield in the test set. 

3. Results and Discussion 

The performance of the LSTM model in 

terms of predicting crop yields was analyzed by 

comparing the predicted yield of the LSTM model 

with the actual yield of crops obtained from the test 

dataset. The model again also revealed fair 

prediction effectiveness; the prediction accuracy 

was 94.64%; the MAPE 5.36%; the MAE 1136.70; 

and the RMSE 1136.70. Furthermore, a high level 

of accordance was witnessed between the actual 

yield and the one predicted in the model making the 

latter capable of capturing the temporal 

dependencies inherent and the nonlinear behavior 

present in this stochastic process. The efficiency of 

the model is explained by its increased ability to 

analyze sequential data and find hidden 

dependencies in temperature, rainfall, and yield 

histories. However, it is also in these areas that the 

results also reveal lessons for improvement. One can 

only speculate that expanding the range of predictor 

variables by including soil fertility, irrigation, crop 

variety, and improved accuracy of meteorological 

data could improve the model. However, one can 

utilize different advanced LSTM forms including 

Bidirectional LSTM or Attention-based LSTMs, 

and hybrid them with other pure machine learning 

techniques like Gradient Boosting or Random 

Forests to enhance the forecasting precision. In total, 

the findings suggest that LSTM models can be 

effectively used for agricultural yield prediction in 

practice. Modeling with larger, more complex 

datasets requires integration with other large-scale 

datasets and more advanced statistical methods for 

further improvement of accuracy and reliability 

across the range of agricultural situations. Although 

soil moisture is essential for crop production, there 

is no reliable data available. This research showed 

that using temperature and rainfall alone in LSTM 

models produced 94.64% accurate yield predictions, 

indicating that the two factors encompass a 

significant amount of climate impacts on yield.   

Results shown in below Fig. 10. 
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Fig. 10: LSTM Model Prediction Output Actual vs Predicted Crop Yield

Yet, the accurate soil moisture data that was 

recorded could improve the prediction accuracy and 

help better allocate water resources in future studies. 

The graph in Fig. 11 demonstrates how the area 

sown shows its pattern together with the production 

index using 2012-13 as the base year. Index values 

display variations between both parameters which 

show times of enhanced efficiency together with 

instances of lowered agricultural output although 

land usage remains steady. 

4. Conclusion 

This study successfully establishes the 

feasibility of using Long Short-Term Memory 

(LSTM) models for yield forecasting based on 

temperature, rainfall, and production history. 

According to the analysis, the model’s variable has 

high yields, a best fit of 94.64%, a MAPE of 5.36%, 

and low error metrics to yield forecasting. The paper 

suggests that LSTM-based models are useful tools 

for getting insights into busted trends in agriculture 

to form data-driven decisions for resource allotment, 

risk management, and food security planning. 

However, this study also indicates places that 

research should continue, to improve the general 

efficiency and effectiveness of supply chains. The 

various factors that might be useful in the model 

include soil characteristics, irrigation technique, the 

kind of crops, and detailed weather conditions 

amongst others. Other steps can also look for more 

different predictions via new architectures of 

LSTM, for example, switching which could be 

evaluated in one scheme to accomplish different 

forecasts or using various levels of LSTM. 

Moreover, testing the presented model in other areas 

and under different crop conditions would 

contribute to its applicability. The presented 

approach can be considered a major step towards the 

utilization of machine learning for sustainable 

agriculture. When used to predict accurate yield 

expectations, LSTM models can reduce the impacts 

of climate fluctuations and inform antimodel 

agricultural management, as well as assist in global 

endeavors to improve food stability following the 

negative repercussions of climate volatility. 

 

Fig. 11: Trend analysis of area sown and production index (Base Year: 2012-13) 
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