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Abstract 

Vegetated dike has a significant role in energy loss of flooding, however, it is a challenging task to 

accurately predict the energy loss. Therefore, the present research work attempted to estimate the energy 

loss of flood over a vegetated dike utilizing machine learning techniques (ML) including random forest 

(RF) and extreme gradient boosting with particle swarm optimization (XGBoost-PSO). Dataset of 

various parameters like Froude number (Fr), velocity reduction (Vo/V), ho/h, (ho: initial water depth, 

h: water in a flume with vegetated dike), ho/B, (B: channel width), and energy loss (E) was calculated 

from the experiment performed in a controlled laboratory setting. Moreover, SHAP analysis was 

performed to investigate the impact of critical parameters on energy loss. The result of the findings 

demonstrates the superior performance of the XGBoost-PSO due to a higher R-value of 0.99 and a lower 

MSE value of 0.0345. The SHAP analysis result indicates that in the case of the RF model parameter 

ho/h has a significant impact on energy loss while ho/B in the case of the XGBoost-PSO model. The 

findings of the present research provide a precise estimation of the energy loss while designing a 

vegetated dike in a flood-prone region. 
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1. Introduction 

Flooding is defined as the occurrence of 

water on land and areas that tend to be dry most of 

the time, usually due to precipitation [1]. Among all 

types of flooding, both flash floods and river floods 

are widespread in Pakistan. The mountainous and 

sub-mountainous region of the country is more 

vulnerable to very heavy flash floods because of 

steep slopes and varied climates. Specifically, the 

hill torrents that collect water drained from the hilly 

and foothills including water derive a good part of 

their volume, and torrents specialized in flash floods 

despite these having averaged low annual rainfall. 

Past works have investigated several flow 

characteristics under subcritical and supercritical 

situations by altering total discharge but fixing the 

channel bed [2-6]. The findings of the undertaken 

studies have been mostly based on assessing the 

energy efficiency of the defense systems [7-10]. 

Ahmed and Ghumman's [9] research shows that 

single-vegetation and hybrid defense systems 

(dyke-moat-vegetation) in subcritical flow 

conditions are associated with 32 percent and 46 

percent energy reduction respectively, while Pasha 

and Tanaka [7] conclude that dense vegetation 

reduces even higher energy than intermediate or 

sparse vegetation under supercritical conditions 

though flow discharge was regulated by change in 
the channel bed. Furthermore, various studies have 

been conducted on hydraulic jumps through defense 

systems in all regimes of flow [11]. A similar 

undulated hydraulic jump was reported by Retsinis 

and Papanicolaou [11] in an open channel with 

rapidly varied flow while Pasha and Tanaka [7] 

observed undulated hydraulic jumps under steady 

subcritical flow conditions in agreement with 

Ahmed and Ghumman [9]. These studies in 

combination suggest defense systems for floods by 

reducing energy dissipation because of hydraulic 

jump, and modification in the drag coefficient under 

both the subcritical and supercritical state by 

varying discharge and keeping the channel bed 

fixed.  

There is clear evidence for the fact that 

vegetation, being one of the major characteristics of 

natural rivers, controls flow resistance. On the same 

note, vegetation offers several ecological benefits 

but turns out to be a factor that complicates the flow 

by increasing flow resistance while at the same time 

affecting sediment transport. In regards to 

engineering concerns of flood, river segments 

generally go through vegetation management [12]. 

As vegetated surfaces and granular sediments are 

associated with different roughness, dissimilar 

measurements are required to model flow accurately 

[13]. There is a trend to determine the flow 

resistance as applied to vegetated parts of river 

systems. This study found vegetation significant in 

river conservation and rehabilitation since it is 

involved in the physical processes that determine 

rivers’ stability and the biology shaping riverine 
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ecosystems and water flow [14]. Some act on the 

short-term mobility of sediments and the 

accumulation of sediment, vertical and lateral flow, 

and flow resistance, thanks to interactions between 

the sediment applicants [14]. Floodplain flow 

processes are frequently convoluted due to the 

dynamic between flow and vegetation and may go 

over the erosion threshold, according to Stone and 

Shen [15]. Water velocity, particularly in floods, is 

also influenced by vegetation, by increasing water 

depth and decreasing the ability of the river to 

discharge floods making flood events worse [16]. 

Moreover, vegetation in a fixed-bed flume causes 

total channel resistance thus worsening water depth 

and improving flow velocity [14]. 

A clear gap is noted in the previous research 

in which the focus was to explore the flood energy 

loss in a controlled laboratory setting under diverse 

flow conditions. However, the present research 

work utilized a dataset of controlled laboratory 

utilizing vegetated dikes to explore the significance 

of the machine learning techniques in predicting 

energy loss. The dataset of energy loss was 

measured under the condition of varying the 

distance between a house model located 

downstream side of the vegetated dike under 

different flow conditions. The dataset of a controlled 

laboratory setting was utilized in various machine 

learning techniques such as RF, and XGBoost-PSO 

as an input parameter while energy loss was 

considered as a predicted/output factor. 

Furthermore, the impact of the critical parameter 

was assessed using a SHAP analysis. 

2. Methodology  

2.1 Data Collection and Machine 
Learning Technique  

Experiments were performed in a controlled 

laboratory environment for collecting a dataset of 

various parameters including flow velocity and 

depth without and with placing vegetated dike in a 

channel. The flow velocity and water depth were 

measured utilizing an electromagnetic velocity 

meter and rail-mounted point gauge. Based on flow 

svelocity and depth various non-dimensional 

parameters like Froude number (Fr = V/(gho)0.5, g: 

gravitational acceleration), ho/h, Vo/V, and ho/B 

were calculated. Moreover, the energy loss was 

estimated from the controlled laboratory 

environment using E =  
E1−E2

E1
, where E1 and E2 are 

the specific energy on the upstream and downstream 

sides of the vegetated dike and a similar approach 

was adopted in previous research [17-20]. 

Therefore, parameters such as Fr, ho/h, ho/B, and 

Vo/V were considered as input while E was an 

output parameter in random forest and extreme 

boosting gradient with particle swarm optimization. 

After collecting a dataset of selected parameters 

machine learning techniques such as RF and 

XGBoost-PSO were utilized to predict the energy 

loss over the vegetated dike. The Random Forest is 

an example of an ensemble learning technique that 

employs a set of decision trees for a better prediction 

of results. Every distinct tree is only trained on a 

randomly selected portion of the data and the overall 

result is reached from averaging all trees’ outputs. 

The RF gives an energy loss value by calculating Fr, 

ho/h, ho/B, and Vo/V. This setup enhances stability 

and reduces the incidence of fitting in elaborate 

work conditions of flow and depth in the laboratory. 

The XGBoost-PSO model splits eXtreme Gradient 

Boosting (XGBoost), this is an effective boosting 

method, which categorizes sequential decision trees, 

with Particle Swarm Optimization (PSO) to 

optimize hyperparameters. The XGBoost uses 

parameters such as Fr, ho/h, ho/B, and Vo/V in 

predicting energy loss, while PSO improves the 

accuracy of the model and computation time for the 

model parameters. Furthermore, a SHAP analysis 

was performed based on the RF and XGBoost-PSO 

models to highlight the importance of the various 

parameters on the energy loss over the vegetated 

dike. Table 1 summarizes the range of various input 

parameters utilized in the machine learning 

techniques. 

Table 1: Range of various input and output 

parameters utilized in the current research. Where 

SD is the standard deviation and E is the energy loss 
  

Parameters ho/B Fr Vo/V ho/h E 

Maximum 0.31 0.409 3.37 0.34 17.99 

Minimum 0.2 0.203 0.247 0.278 11.546 

SD 0.038 0.08 1.371 0.017 1.872 

Average 0.259 0.324 2.19 0.311 14.883 

3. Result and Discussion 

3.1 Performance Indicator (RF & 
XGBoost-PSO) 

Figure 2a-b depicts the result of the 

performance indicators and predicted values of the 

RF and XGBoost-PSO models. When comparing 

the performance of two machine learning 

techniques, namely RF and XGBoost with PSO, the 

correlation coefficient, and the mean square error 

were used. The results of using the XGBoost-PSO 

framework as the predictive model showed satisfac-
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Fig. 1: Methodology framework of the current 

research  

tory metrics as the value of R was 0.99 and MSE 

was 0.0345 which means; a very good and strong 

positive correlation between n predicted and 

actual values and margin of error respectively. 

Nonetheless, the RF model had a higher R-value of 

0.978 and MSE of 0.071, and a similar result was 

reported in a study conducted by Khan et al [21], but 

those values were slightly lower than the indicators 

of superordination of XGBoost-PSO. Hence, the 

improved performance of the proposed hybrid 

model, XGBoost-PSO, can be linked to the 

integration of the components. XGBoost came into 

the picture because of its strong capability to handle 

nonlinear relationships and minimum error by 

boosting [22]. To include additional complexity of 

the Particle Swarm Optimization (PSO), which 

helped to fine-tune these hyperparameters to 

improve the convergence rate and the accuracy of 

the model. This results in a better generalization of 

the data set and a closer  approximation to the 

original results as shown below. Since a lower MSE 
was obtained for XGBoost-PSO, it means that 

XGBoost-PSO is more precise in its predictions as 

well as minimizing prediction errors than RF. 

Therefore, the proposed approach, the XGBoost-

PSO model, is more acceptable in this work for this 

application because of the better accuracy and lesser 

error compared to the traditional PSO model. 

(a) 

(b) 

Fig. 2: Performance indicators and predicted 

values of different machine learning 

techniques (a) performance indicator 

of the random forest and extreme 

gradient boosting with particle swarm 

optimization (b) predicted and 

observed values of the energy loss. 

3.2 SHAP Analysis 

Figure 3a-b illustrates the impact of various 

parameters on the energy loss over vegetated dike 

using SHAP analysis. The SHAP analysis 

conducted for the Random Forest model highlights 

the influence of specific parameters on energy loss 

through a vegetated dike. The results indicate that 

parameters such as the Froude number (Fr), relative 

depth ratio (ho/h), relative width ratio (ho/B), and 

velocity ratio (Vo/V) significantly impact the 

energy loss. The Froude number (Fr), a 
dimensionless parameter representing the flow 

regime, plays a crucial role in determining energy 

loss. Higher Froude numbers indicate supercritical 

Data collection: Flow velocity, depth, channel 

geometry, dike and vegetation conditions

Selection of input and output parameters

Machine Learning Techniques

Random Forest XGBoost model

Performance of Model: 

Correlation Coefficient (R), Mean Square Error 

(MSE)
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flow conditions, where kinetic energy dominates. 

This increases turbulence around the vegetated 

dike, leading to greater energy dissipation. 

Consequently, Fr has a notable impact on energy 

loss, as higher values intensify interactions between 

the water flow and vegetation. The relative depth 

ratio (ho/h) also affects energy loss. This ratio 

represents the water depth over the dike compared 

to the downstream depth. A higher ho/h ratio 

implies a deeper overflow over the dike, which can 

lead to increased flow resistance due to submerged 

vegetation, amplifying energy dissipation. 

Similarly, the relative width ratio (ho/B), which 

compares the water depth over the dike to the dike’s 

width, influences energy loss. A higher ho/B ratio 

indicates that the water depth is more significant 

relative to the dike width, enhancing the interaction 

between flow and vegetation, which raises energy 

dissipation through drag and turbulence. Finally, 

the velocity ratio (Vo/V), representing the overflow 

velocity relative to the main flow velocity, affects 

energy loss. Higher Vo/V ratios suggest a more 

intense flow over the dike, increasing energy 

dissipation as the vegetation absorbs and disrupts 

the flow. 

The parameters, Froude number (Fr), relative 

depth ratio (ho/h), relative width ratio (ho/B), and 

velocity ratio (Vo/V)—have a significant impact on 

energy loss through a vegetated dike as they dictate 

flow behavior and interaction with vegetation. 

Higher values of these parameters increase 

turbulence, drag, and flow resistance. This 

intensifies energy dissipation as water interacts 

more dynamically with the vegetative surface, 

making these parameters crucial for optimizing 

flood mitigation designs. 

4. Conclusion 

In the current research, a controlled 

laboratory setting was performed utilizing a 

vegetated dike under various flow conditions. An 

experimental dataset was collected under subcritical 

flow conditions through a vegetated dike to predict 

energy loss using machine learning techniques such 

as random forest (RF) and extreme gradient 

boosting with particle swarm optimization 

(XGBoost-PSO). Therefore, the conclusion of the 

current research is following.  

The findings of the current research conclude 

a super performance and prediction capacity of the 

XGBoost-PSO technique in comparison to the RF 

model due to a higher correlation coefficient value 

of 0.99 and a lower mean square error value of 

0.0345. Moreover, the SHAP analysis performed in 

the current research shows the significant impact of 

the initial water depth ratio on the channel width. 

The study concluded that by increasing the ratio of 

ho/B, energy loss also increases.  

The current recommended that future 

research should focus on the investigation of 

various hydraulic forces through vegetated-dike 

and for the prediction of hydraulic forces advanced 

machine learning techniques should be utilized. 

 

(a) (b) 

Fig. 3: Result of SHAP analysis for different machine learning techniques (a) random forest model (b) 

XGBoost-PSO 
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