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Abstract 

This research paper presents a rigorous comparative analysis of five leading image restoration 

algorithms: Wiener Filter, Adaptive Histogram Equalization (AHE), Denoising through Non-Local 

Means (NLM), Iterative Back Projection (IBP), and Richardson-Lucy (RL) Deconvolution. With a focus 

on applications in medical imaging, surveillance, and remote sensing, the study addresses challenges 

related to noise and degradation. Our evaluation, conducted on a diverse dataset, employs key 

performance metrics such as Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), 

Structural Similarity Index (SSIM), Feature Similarity Index (FSIM), and Universal Image Quality Index 

(UIQI). The research yields compelling evidence, positioning the Richardson-Lucy Deconvolution 

algorithm as the optimal choice. Demonstrating superior performance in high-quality image 

reconstruction, noise reduction, and structural preservation, RL Deconvolution emerges as the most 

suitable technique for a range of real-world scenarios. This research contributes pivotal insights, 

steering the practical application of image restoration towards heightened efficacy and reliability.  

Keywords: Image Restoration, Wiener Filter, Adaptive Histogram Equalization, Denoising through 

Non-Local Means, Iterative Back Projection, Richardson-Lucy Deconvolution, PSNR, MSE, SSIM, 
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1. Introduction

Image restoration, a crucial component of image 

processing, plays a fundamental role in refining 

images degraded by various factors during 

acquisition, transmission, or storage. The 

significance of image restoration extends across 

diverse domains, including medical imaging, 

surveillance, and remote sensing. The central 

objective is to enhance the visual quality of images 

afflicted by issues such as blurriness, artifacts, or 

noise, ensuring their optimal utilization in critical 

applications. Through the deployment of 

sophisticated algorithms rooted in mathematical 

models, signal processing, and statistical methods, 

image restoration techniques aim to reconstruct 

images, bringing them back to their original quality. 

The impact of these techniques resonates from 

improving the precision of medical diagnoses to 

aiding forensic investigations in surveillance and 

enabling accurate geographical mapping through 

the refinement of satellite images. This paper 

conducts a comprehensive comparative analysis of 

five key image restoration algorithms—Wiener 

Filter, Adaptive Histogram Equalization (AHE), 

Denoising through Non-Local Means (NLM), 

Iterative Back Projection (IBP), and Richardson-

Lucy (RL) Deconvolution—aiming to provide 

valuable insights into their performance and assist 

in selecting the most effective algorithm for 

specific tasks. Image restoration is a critical task in 

image processing, involving the reconstruction of 

degraded images using prior knowledge of the 

degradation process. It aims to obtain the best 

possible estimate of the desired result. While some 

restoration techniques excel in the spatial domain, 

others find their strength in frequency domain 

approaches [1]. 

Degradation [5] can stem from various 

sources, including image sensor noise, defocus-

induced blurring, and transmission channel noise. 

Smoothing plays a pivotal role in image restoration 
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by reducing noise and enhancing visual quality. 

Numerous algorithms, both linear and nonlinear, 

are employed for image filtering, enabling a range 

of valuable tasks in image processing. Linear filters 

can effectively reduce unwanted noise (as 

illustrated in Figure 1), while others are designed to 

reverse blurring effects. Nonlinear filters exhibit 

distinct behavior, departing from the principles of 

scaling and shift invariance, leading to non-

intuitive variations in filter output [2], [3], [4]. 

 

 

 

 

Fig. 1: A defected image and a restored real 

image after the application of image 

restoration algorithm [2] visually 

highlighting the algorithm's ability to 

rectify defects, offering readers an 

immediate understanding of the 

restoration outcomes. 

Digital images can suffer from multiple 

sources of corruption, including malfunctioning 

camera pixels, hardware memory issues, or noisy 

channel transmission. Noise represents unwanted 

information that degrades image quality and 

impacts the accuracy of various image processing 

applications, such as segmentation, classification, 

edge detection, and compression [6]. The success of 

image restoration relies on several factors, 

including researchers' understanding of the original 

image, the extent of degradation, the underlying 

causes, and the accuracy of degradation models. 

Implementing these restoration techniques 

accurately is also essential [7]. An image 

restoration algorithm employs restoration filters to 

reconstruct an altered image. This method reduces 

noise and blur, resulting in a close match with the 

original image. The effectiveness of our restoration 

filter is directly related to how closely the estimated 

image resembles the original one. Figure 2 provides 

an illustrative depiction of the restoration model's 

structure [8]. 

 

Fig. 2: Model of Image Restoration Algorithm 

[9] providing a standalone visual 

representation of processes involved in 

reconstructing altered images through 

restoration filters. 

This literature review provides valuable 

insights into the latest advancements in image 

restoration algorithms, which serve as a crucial 

basis for our comprehensive comparative analysis 

of five widely adopted techniques: the Wiener 

Filter, Adaptive Histogram Equalization (AHE), 

Denoising through Non-Local Means (NLM), 

Iterative Back Projection (IBP), and Richardson-

Lucy (RL) Deconvolution. Our analysis involves 

assessing these methods using metrics such as Peak 

Signal-to-Noise Ratio (PSNR), Mean Squared 

Error (MSE), Structural Similarity Index (SSIM), 

Feature Similarity Index (FSIM), and Universal 

Image Quality Index (UIQI). This overview 

provides a solid framework for the next parts, 

which include a deep comparative evaluation of 

several image restoration methods. 

2. Objectives 

Objectives of the research paper are 

discussed under: 

Comparative Analysis: Conduct a thorough 

comparative analysis of five prominent image 

restoration algorithms—Wiener Filter, AHE, NLM, 

IBP, and RL Deconvolution. The primary aim of 

this objective is to dissect the strengths and 

weaknesses of five widely recognized image 

restoration algorithms. By subjecting them to a 

comprehensive comparative analysis, we intend to 

unveil nuanced differences in their performance 

concerning aspects such as noise reduction, detail 

preservation, and adaptability to diverse image 

characteristics. 

Performance Metrics Evaluation: 

Evaluate the algorithms using key performance 

metrics such as PSNR, MSE, SSIM, FSIM, and 

UIQI to provide a comprehensive understanding of 

their effectiveness. Defining and applying a set of 

key performance metrics is imperative to quantify 

and compare the effectiveness of image restoration 

algorithms objectively. Each metric, from PSNR 

measuring fidelity to UIQI assessing overall image 

quality, contributes a unique perspective. 
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Dataset Diversity: Utilize a diverse dataset 

encompassing varied subjects, scenes, and color 

schemes to ensure a nuanced evaluation of 

algorithmic performance across real-world 

scenarios. The real-world applicability of image 

restoration algorithms necessitates evaluation on 

diverse datasets. This objective seeks to create a 

realistic simulation of the challenges these 

algorithms may encounter. By incorporating 

variations in subjects, scenes, and color schemes, 

we aim to ensure that the evaluation is 

representative of the complexities present in 

practical scenarios. 

Algorithmic Characteristics: Provide a 

detailed overview of the characteristics and 

applications of each image restoration algorithm to 

enhance understanding and reference for 

researchers. This objective aims to contribute to the 

understanding of image restoration algorithms by 

offering a detailed exposition of their 

characteristics and applications. By elucidating the 

strengths and specific use cases of each algorithm, 

researchers and practitioners can make informed 

decisions when selecting an algorithm for a 

particular task. This information not only aids in 

algorithm selection but also serves as a valuable 

reference for future research and development in 

the field of image processing. 

Implementation: Implement the evaluation 

methodology using the MATLAB programming 

language and relevant libraries to ensure a 

systematic and efficient execution of the 

algorithms. The choice of a robust implementation 

platform is pivotal in ensuring the reproducibility 

and reliability of the research outcomes. This 

objective emphasizes the use of MATLAB, a 

widely adopted platform for image processing, to 

execute the evaluation methodology. By leveraging 

relevant libraries, we aim to ensure both the 

systematic execution of algorithms and the efficient 

handling of large-scale datasets, contributing to the 

credibility and replicability of the research. 

Visualization: Communicate the results 

effectively through well-designed visualizations, 

including graphs depicting the comparative 

analysis of performance metrics across different 

restoration algorithms. Effectively communicating 

the research findings is as crucial as the analysis 

itself. This objective focuses on the creation of clear 

and informative visualizations, such as graphs, to 

illustrate the comparative performance of image 

restoration algorithms. Visualizations enhance the 

accessibility of the results, allowing researchers and 

practitioners to quickly grasp the nuances of 

algorithmic performance. This aids in the 

dissemination of knowledge and facilitates the 

integration of research outcomes into the broader 

image processing community. 

Contribution to the Field: Contribute 

valuable insights for selecting the most suitable 

image restoration algorithm based on specific 

application requirements, thereby advancing the 

field of image processing. The overarching goal of 

this research is to make a substantive contribution 

to the field of image processing. By providing 

actionable insights into algorithm selection based 

on specific application requirements, this objective 

aims to guide practitioners and researchers in 

making informed decisions. The cumulative 

knowledge generated contributes to the 

advancement of image processing, fostering 

innovation and improvements in the design and 

application of image restoration algorithms. 

3. Novelty Statement and 
Justification 

This research introduces a novel and in-depth 

comparative analysis of five prominent image 

restoration algorithms: Wiener Filter, Adaptive 

Histogram Equalization (AHE), Denoising through 

Non-Local Means (NLM), Iterative Back 

Projection (IBP), and Richardson-Lucy (RL) 

Deconvolution. The primary contribution of this 

study lies in its meticulous examination of these 

algorithms through a comprehensive evaluation 

process, utilizing various performance metrics and 

a diverse dataset. This approach enhances our 

understanding of the strengths and limitations of 

these algorithms across a spectrum of real-world 

scenarios. 

The significance of this research is 

underscored by its detailed and systematic 

assessment of image restoration algorithms, taking 

into account a range of metrics such as Peak Signal-

to-Noise Ratio (PSNR), Mean Squared Error 

(MSE), Structural Similarity Index (SSIM), Feature 

SIMilarity (FSIM), and Universal Image Quality 

Index (UIQI). This multifaceted evaluation 

provides a nuanced perspective, allowing for a 

more thorough comprehension of the algorithms' 

performance characteristics. 

4. Related Work 

The related work section is expanded to 

provide a more detailed overview of existing 

research, establishing a stronger connection with 

the current study. This enhanced section 

underscores the advancements in image restoration 

algorithms, paving the way for a comprehensive 

comparative analysis. 
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4.1 Historical Overview 

The field of image restoration has witnessed 

significant advancements over the years, with 

various algorithms addressing the challenges posed 

by image degradation. Early efforts predominantly 

focused on linear techniques, such as the Wiener 

Filter, which aimed to minimize the effects of 

additive noise in images [1]. These foundational 

methods laid the groundwork for subsequent 

innovations and paved the way for more 

sophisticated approaches. 

4.2 Wiener Filter 

The Wiener Filter operates on the principle 

of linear least squares estimation, aiming to restore 

images by minimizing the mean square error (MSE) 

between the restored and original images. 

Developed by Norbert Wiener, it strikes a balance 

between enhancing image sharpness and 

minimizing noise amplification. The algorithm's 

effectiveness in additive noise reduction has made 

it versatile across applications, such as medical 

imaging and remote sensing. The Wiener Filter is a 

renowned image restoration method that operates 

on the principle of linear least squares estimation. 

Named after Norbert Wiener, this algorithm excels 

at reducing the effects of additive noise in images. 

Its primary focus is on balancing the enhancement 

of image sharpness while minimizing the 

amplification of noise. This delicate balance makes 

it a versatile choice in various applications, 

including medical imaging and remote sensing. The 

Wiener Filter aims to minimize the mean square 

error (MSE) between the restored and original 

images. It achieves this by utilizing a frequency 

domain approach, making it effective in scenarios 

where the imaging system's frequency response is 

known. Researchers have further refined the 

Wiener Filter for optimal results. Notable 

enhancements include an iterative Wiener filter 

algorithm with rapid convergence through step-size 

optimization and the use of genetic algorithms to 

estimate noise regularization parameters for 

satellite image restoration. The steps of operation of 

wiener filter image restoration algorithm are 

demonstrated in Figure 3. 

The Wiener filter stands as an effective technique 

for restoring degraded images, minimizing the 

mean square error (MSE) between restored and 

original images. Researchers have refined this filter 

for optimal results. The iterative Wiener filter 

algorithm introduced by Xi and Liu optimizes step-

size for rapid convergence [10]. Aouinti et al. 

employed a genetic algorithm to estimate noise 

regularization parameters for satellite image 

restoration [11]. Yang et al. pioneered an adaptive 

Wiener filter for remote sensing, addressing distinct 

noise regularization needs in edge and flat areas 

[12]. 

 

Fig. 3: Steps of Operation of Wiener Filter Image 

Restoration Algorithm 

4.3 Non-Local Approaches 

The emergence of non-local approaches, 

such as Denoising using Non-Local Means (NLM), 

represents a significant paradigm shift in image 

restoration. Unlike traditional denoising methods 

that rely solely on local pixel neighborhoods, NLM 

considers similarities in image patches across the 

entire image [13]. This departure from pixel-wise 

assessments enhances robustness against noise 

levels and provides more accurate similarity 

measurements, making NLM particularly effective 

in noise reduction while preserving structural 

details. Denoising using Non-Local Means (NLM) 

is a foundational image restoration algorithm that 

has attracted significant attention and recognition 

within the research and practical communities. The 

core principle of NLM revolves around exploiting 

non-local similarities within an image to remove 

noise while preserving the essential image 

structures. Unlike traditional denoising methods 

that rely solely on local pixel neighborhoods, NLM 

considers similarities in image patches from across 

the entire image, resulting in superior noise 

reduction. Non-Local Means (NLM) represents a 

significant shift in image restoration approaches. 

Specifically, Denoising using Non-Local Means 

(NLM) operates on the principle of considering 

similarities in image patches across the entire 

image, departing from traditional denoising 

methods that rely solely on local pixel 

neighborhoods. This departure enhances robustness 

against noise levels and provides more accurate 

similarity measurements, making NLM particularly 

effective in noise reduction while preserving 

structural details. The core concept of NLM 

involves averaging pixel intensities based on the 

similarity in intensity across non-local patches. By 

doing so, NLM achieves greater robustness against 

noise levels compared to pixel-wise assessments. 

This non-local characteristic enhances its 

adaptability and effectiveness in handling diverse 

image structures and patterns. The steps of 
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operation include searching for similar patches 

across the entire image, computing weighted 

averages, and generating a denoised image. NLM 

has become foundational in image restoration, 

attracting significant attention and recognition 

within both research and practical communities. 

The steps of operation of denoising using non-local 

means image restoration algorithm are 

demonstrated in Figure 4. 

 

Fig. 4: Steps of Operation of Denoising using 

Non-Local Means (NLM) Image 

Restoration Algorithm 

The Non-Local Means (NLM) filter [13] 

represents an evolution of the Yaroslavsky filter. 

Both filters operate by averaging image pixels 

based on their similarity in intensity. Similar 

principles underpin other filters such as SUSAN 

[14] and bilateral filters. However, the NLM 

distinguishes itself by two key features. Firstly, 

NLM achieves greater robustness against noise 

levels by employing region-based comparisons 

rather than pixel-wise assessments. This ensures 

more accurate and reliable similarity 

measurements. Secondly, the NLM's uniqueness 

lies in its non-local approach, wherein pattern 

redundancy is not limited to local neighborhoods. 

Unlike the bilateral filter, the NLM does not 

penalize pixels that are distant from the one being 

filtered solely due to their spatial separation. This 

non-local characteristic enhances its adaptability 

and effectiveness in handling diverse image 

structures and patterns. 

4.4 Adaptive Histogram Equalization 

Histogram equalization techniques have long 

been recognized for their simplicity and 

effectiveness in image restoration. Adaptive 

Histogram Equalization (AHE) takes a step further 

by addressing challenges such as uneven lighting 

and variable contrast levels within an image [15]. 

The technique divides an image into smaller, 

localized sections, equalizing histograms within 

each region individually. The choice of the type of 

sub-blocks (overlapping, non-overlapping, partially 

overlapping) impacts the algorithm's performance, 

and this diversity reflects the adaptability of AHE 

to various restoration scenarios [16]. Adaptive 

Histogram Equalization (AHE) is a significant 

image restoration method well-known for 

improving image contrast and visual quality. AHE 

works on the idea of adaptive histogram 

modification, in which it divides an image into 

smaller, localized sections and equalizes the 

histograms within each region individually. The 

technique enables AHE to address difficulties such 

as uneven lighting and variable contrast levels 

within an image, which typically result in visual 

information degradation. Adaptive Histogram 

Equalization (AHE) is a significant image 

restoration method known for its effectiveness in 

improving image contrast and visual quality. 

Unlike traditional histogram equalization 

techniques, AHE takes a step further by addressing 

challenges such as uneven lighting and variable 

contrast levels within an image. The technique 

divides an image into smaller, localized sections, 

equalizing histograms within each region 

individually. The adaptability of AHE to various 

restoration scenarios is reflected in the diversity of 

its approaches, including overlapping and non-

overlapping sub-blocks. The choice of sub-block 

types impacts the algorithm's performance, 

showcasing the flexibility of AHE. This method 

works on the concept of adaptive histogram 

modification, providing a nuanced approach to 

enhance image details in localized regions, making 

it particularly suitable for scenarios where uneven 

illumination or varying contrast levels are 

prevalent. The steps of operation of Adaptive 

Histogram Equalization (AHE) image restoration 

algorithm are demonstrated in Figure 5.  

 

Fig. 5: Steps of Operation of Adaptive 

Histogram equalization Image 

Restoration Algorithm 

There are three approaches to adaptive 

histogram equalization: overlapping sub-blocks, 

nonoverlapping sub-blocks, and partially 

overlapping sub-blocks. Among these, the 

nonoverlapping sub-block approach is seldom 

utilized due to its square-shaped artifacts. Similarly, 

the overlapping sub-block method is rarely 

employed in practice due to its high computational 

demands and sluggish processing speed. In 
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contrast, the partially overlapping sub-block 

method offers a viable solution to expedite 

calculations while maintaining effectiveness, albeit 

with increased complexity [16]. 

4.5 Evolution of Deconvolution 
Techniques 

Non-blind deconvolution, where the Point 

Spread Function (PSF) is known beforehand, has 

been a focal point in image restoration. The 

Richardson-Lucy deconvolution algorithm [17], 

originating in the 1970s, gained popularity in fields 

like medical imaging and astronomy. Its iterative 

approach, rooted in Bayesian principles, has 

positioned it as a superior tool for image restoration 

compared to linear methods. Verdi's reintroduction 

of the Richardson-Lucy algorithm in the 1980s 

addressed challenges in emission tomography 

imaging, particularly with dominant Poisson 

statistics [18]. Richardson-Lucy (RL) 

Deconvolution is a pivotal image restoration 

algorithm with profound implications for various 

scientific and industrial applications. Its primary 

focus is on image deblurring, aiming to recover 

high-quality images from their blurred or degraded 

counterparts. RL Deconvolution stands out for its 

iterative approach, which continually refines an 

initial estimate of the restored image using a 

mathematical model of the blurring process and the 

observed blurred image. The Richardson-Lucy 

(RL) Deconvolution is a non-blind deconvolution 

technique where the Point Spread Function (PSF) is 

known. It aims to recover high-quality images from 

their blurred counterparts. The algorithm involves 

an iterative approach, refining the restored image 

using a mathematical model of the blurring process 

and the observed blurred image. The number of 

iterations needed is manually determined for each 

image based on the PSF size. Richardson-Lucy 

(RL) Deconvolution has seen applications in 

medical imaging and astronomy. It has been refined 

over the years to address challenges in emission 

tomography imaging, especially with dominant 

Poisson statistics. 

The steps of operation of Richardson-Lucy 

(RL) Deconvolution image restoration algorithm 

are demonstrated in Figure 6. 

Image restoration methods can be broadly 

categorized into two types: blind and non-blind 

deconvolution. Non-blind deconvolution is the 

approach where the Point Spread Function (PSF) is 

known beforehand. One notable technique in this 

category is the Richardson–Lucy deconvolution 

algorithm [17], which has gained popularity in 

fields like medical imaging and astronomy. Its 

origins trace back to the early 1970s, when Lucy 

and Richardson derived it using Bayesian 

principles. The Richardson-Lucy algorithm was 

reintroduced by Verdi in the 1980s to solve the 

challenges of emission tomography imaging with 

dominant Poisson statistics. It is a nonlinear 

iterative process that has become widely accepted 

 

Fig. 6: Steps of Operation of Richardson-Lucy 

(RL) Deconvolution Image Restoration 

Algorithm 

over the past two decades as a superior 

restoration tool compared to linear methods. The 

number of iterations needed to achieve high-quality 

restored images is manually determined for each 

image based on the PSF size. This algorithm is 

effective in situations where the noise function is 

unknown [18]. 

4.6 Iterative Back Projection (IBP) 

Iterative Back Projection (IBP) represents a 

fundamental image restoration algorithm that has 

maintained its relevance and significance in the 

ever-evolving field of image processing. IBP 

primarily targets the task of image deblurring, 

whose core objective is to recover sharp and clear 

images from their blurred counterparts. The 

algorithm operates by iteratively refining an initial 

estimate of the restored image using a combination 

of the observed blurred image and a mathematical 

model of the degradation process. Through 

successive iterations, IBP progressively reduces 

artifacts and restores high-frequency details, 

making it particularly effective in applications like 

astronomical imaging and medical diagnostics. 

Iterative Back Projection (IBP) stands as a 

fundamental image restoration algorithm with 

continued relevance and significance in the field of 

image processing. Primarily targeting image 

deblurring, IBP aims to recover sharp and clear 

images from their blurred counterparts. The 

iterative process involves refining an initial 

estimate of the restored image by utilizing both the 

observed blurred image and a mathematical model 

of the degradation process. Through successive 

iterations, IBP progressively reduces artifacts and 

restores high-frequency details. This iterative 
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refinement process makes IBP particularly 

effective in applications like astronomical imaging 

and medical diagnostics. The unique approach of 

simulating a low-resolution image, subtracting it 

from the observed low-resolution image, and back 

projecting the error contributes to the gradual 

enhancement of the reconstructed high-resolution 

image. IBP's iterative nature allows it to adapt and 

refine its estimates, making it a powerful tool for 

image deblurring tasks. The steps of operation of 

Iterative Back Projection (IBP) image restoration 

algorithm are demonstrated in Figure 7. 

 

Fig. 7: Steps of Operation of Iterative Back 

Projection (IBP) Image Restoration 

Algorithm 

In the Iterative Back Projection (IBP) 

approach [19], the procedure commences with an 

initial estimation of the High-Resolution (HR) 

image. This initial HR image can be generated by 

down sampling the pixels from the input Low-

Resolution (LR) image. Subsequently, this initial 

HR image is further down sampled to mimic the 

observed LR image. The simulated LR image is 

then subtracted from the actual observed LR image. 

If the initially estimated HR image aligns perfectly 

with the observed HR image, the simulated LR 

image will coincide with the observed LR image, 

resulting in a difference of zero. In such cases, the 

HR image is refined by back projecting the error 

(the disparity) between the simulated LR image, 

which has undergone the effects of imaging blur, 

and the observed LR image. This iterative process 

continues until the energy of the error is minimized. 

The Iterative Back Projection procedure repeats 

iterations until either the cost function reaches a 

predefined minimum, or a predetermined number 

of iterations have been completed. This iterative 

refinement process effectively enhances the quality 

of the reconstructed HR image. 

4.7 Algorithm Refinement 

Researchers have continually refined 

existing algorithms to optimize their performance 

in specific applications. For instance, the Wiener 

Filter has seen enhancements, such as an iterative 

Wiener filter algorithm with rapid convergence 

through step-size optimization [10]. Similarly, 

genetic algorithms have been employed to estimate 

noise regularization parameters for satellite image 

restoration using the Wiener Filter [11]. These 

refinements highlight the adaptability and 

versatility of image restoration algorithms. 

4.8 Contemporary Challenges and 
Opportunities 

As image restoration techniques evolve, 

contemporary challenges and opportunities become 

apparent. The increasing complexity of imaging 

scenarios, diverse application domains, and the 

advent of deep learning approaches are shaping the 

landscape of image restoration research. 

Understanding the historical context and evolution 

of these techniques is vital for contextualizing and 

appreciating the contributions of contemporary 

studies, such as the comprehensive comparative 

analysis presented in this research. 

 

In summary, the related work provides an in-

depth exploration of the historical progression and 

recent innovations in image restoration algorithms. 

This comprehensive overview establishes a strong 

foundation for the subsequent comparative 

analysis, shedding light on the strengths and 

limitations of various techniques. 

5. Methodology 

The comparative analysis of selected image 

restoration techniques, including Wiener Filter, 

Adaptive Histogram Equalization (AHE), 

Denoising through Non-Local Means (NLM), 

Iterative Back Projection (IBP), and Richardson-

Lucy (RL) Deconvolution, was conducted with a 

methodical evaluation of their efficacy. The 

assessment leveraged the capabilities of the 

MATLAB programming language, incorporating 

pertinent libraries to ensure the efficient execution 

of these algorithms. 

5.1 Data Collection 

The dataset section of the research paper 

employed a diverse assortment of images to explore 

Image Restoration Algorithms. This dataset [20] 

encompassed varied subjects and scenes, 

accounting for image dimensions, color palettes, 

and intricacy. Image dimensions spanned from 

256x256 pixels to 1024x1024 pixels. Among these, 

certain images featured intricate detailing with 24-

bit color depths, while others presented less 

complexity with 8-bit color variations. This 
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juxtaposition facilitates a comprehensive 

assessment of algorithmic performance across 

diverse color schemes. The dataset further 

comprised two color categories: monochromatic 

images and those infused with colors such as red, 

green, and blue. This meticulously curated dataset 

affords a nuanced evaluation of selected image 

restoration algorithms across multifaceted real-

world scenarios, enhancing our insight into 

algorithm efficacy concerning a myriad of image 

types and complexities. 

5.2 Evaluation Metric 

This section aims to comprehensively assess 

image restoration algorithms by employing six 

essential performance metrics: Peak Signal-to-

Noise Ratio (PSNR), Mean Squared Error (MSE), 

Structural Similarity Index (SSIM), Feature 

Similarity Index (FSIM), and Universal Image 

Quality Index (UIQI). These metrics establish a 

robust foundation for evaluating and determining 

the effectiveness of image restoration techniques. 

5.2.1 Peak Signal to Noise Ratio 
(PSNR) 

When scrutinizing recovered images, PSNR 

plays a pivotal role as a crucial metric. It gauges 

quality by comparing the maximum pixel value of 

the original and restored images to the mean 

squared error. Higher PSNR values indicate a 

restored image closely resembling the original, 

signifying excellent restoration quality. This metric 

facilitates the assessment of any introduced 

distortion or noise during the restoration process, 

offering precise insights into restoration 

performance [21], [22], and [23]. 

5.2.2 Mean Squared Error (MSE) 

MSE, another fundamental statistic, 

measures the average squared difference between 

pixel values in the original and restored images. 

Lower MSE values correspond to a stronger 

likeness between the two images, reflecting a 

higher level of trustworthiness in the image 

restoration technique [24], [25], and [26]. 

5.2.3 Structural Similarity Index 
(SSIM) 

SSIM assesses the structural similarity of 

original and restored images, considering 

brightness, contrast, and structure. Higher SSIM 

values imply enhanced structural integrity, 

texturing, and perceptual quality retention, 

contributing to a comprehensive evaluation [27], 

[28], and [29]. 

5.2.4 Feature Similarity Index (FSIM) 

FSIM evaluates the similarity of basic 

properties between the original and restored 

images, focusing on perceptual factors. It provides 

insights into the restoration algorithm's capability 

to retain crucial image features [30], [31], and [32]. 

5.2.5 Universal Image Quality Index 
(UIQI) 

UIQI compares the histograms of original 

and restored images to determine overall image 

quality. Higher UIQI values indicate effective 

image preservation, contributing to a more 

thorough assessment of restoration efforts [33], 

[34], and [35].  

Integration of these performance metrics 

provided an objective and diverse method for 

evaluating picture restoration methods, ensuring the 

selection of the most successful restoration 

algorithms for real-world applications. 

5.3 Implementation 

The implementation of image restoration 

algorithms was executed using MATLAB (version: 

9.14.0.2206163 (R2023a)), with the support of the 

image processing toolbox. The experiments were 

conducted on a system equipped with an Intel Core 

i7 processor and 16GB RAM, operating on 

Microsoft Windows 10 Pro Version 10.0. The 

diverse dataset used for testing encompassed 

images of varied dimensions and color palettes. The 

systematic application of image restoration 

algorithms involved sequential processing, and 

evaluations were conducted using established 

metrics: Peak Signal-to-Noise Ratio (PSNR), Mean 

Squared Error (MSE), Structural Similarity Index 

(SSIM), Feature Similarity Index (FSIM), and 

Universal Image Quality Index (UIQI), as 

illustrated in Figure 8. To ensure the credibility of 

the evaluations, the dataset underwent meticulous 

curation to cover diverse scenarios and challenges. 

Testing conditions remained consistent, and 

rigorous measures were implemented to eliminate 

potential sources of bias. The presented results 

reflect the performance of algorithms under 

controlled and reliable testing conditions. 
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Fig. 8: Implementation of Image Restoration 

Algorithms Comparative Analysis 

5.3.1 Implementation Overview 

The Implementation Section delved into 

image restoration techniques employing various 

algorithms, with the primary objective of 

effectively reducing noise while preserving crucial 

image components for the restoration of degraded 

images. The section outlined the procedures 

employed to achieve this objective, emphasizing 

findings from the examination of multiple 

restoration algorithms. 

5.3.2 Algorithmic Execution 

Initiating with the definition of input 

parameters, including image file names and applied 

noise levels, the code elegantly managed pre-

computed evaluation results files, loading available 

data or proceeding with the restoration and 

evaluation process. The core of the implementation 

involved the processing of each image, including 

reading and conversion to grayscale if necessary. 

Gaussian noise was introduced, and five distinct 

restoration algorithms—Wiener Filter, Adaptive 

Histogram Equalization (AHE), Denoising using 

Non-Local Means (NLM), Iterative Back 

Projection (IBP), and Richardson-Lucy (RL) 

Deconvolution—were sequentially applied. 

5.3.3 Evaluation and Visualization 

Each algorithm was meticulously executed, 

and evaluations for various metrics (PSNR, SSIM, 

MSE, UIQI, and FSIM) were performed to quantify 

restoration quality. The code efficiently saved 

evaluation results and images with applied 

restoration for future analysis. It computed average 

performance metrics across all images for each 

algorithm, providing a clearer understanding of 

algorithmic effectiveness. Visual representation of 

evaluation metrics was thoughtfully addressed 

through generated bar graphs illustrating average 

PSNR, SSIM, MSE, UIQI, and FSIM values across 

different restoration algorithms. 

In summary, the implementation section 

showcased a meticulous and organized approach to 

comparing image restoration algorithms. The code 

adeptly managed image processing intricacies and 

effectively communicated results through well-

designed visualizations, serving as a robust 

foundation for the research paper's objective of 

evaluating and comparing image restoration 

techniques. 

5.4 Reproducibility and Seed 
Parameters 

One critical aspect of experimental research 

is reproducibility, ensuring that the results of an 

experiment can be reliably reproduced. In our 

image restoration comparison work, several 

processes, such as the addition of noise, involve 

random elements. To address this concern and 

ensure the reproducibility of our findings, we 

employed a strategy to control the randomness by 

setting the seed parameters for MATLAB's random 

number generator. Specifically, we utilized the rng 

function with the argument 'default' at the 

beginning of our script. This action ensures that the 

random number generator is initialized to a default 

state, allowing us to achieve a consistent starting 

point for the generation of random numbers 

throughout our experiments. While setting the seed 

parameters enhances the consistency of our results 

across different runs, it is important to note that not 

all sources of randomness in MATLAB may be 

affected. We encourage readers to review the 

documentation of specific functions to gain insights 

into the potential impact of randomness and 

strategies for reproducibility. In summary, by 

explicitly addressing the issue of reproducibility 

and describing the steps taken to control seed 

parameters, we aim to provide a foundation for 

others to validate and build upon our research 

outcomes. 

5.5 Results and Analysis 

The experimental outcomes demonstrate 

how well Wiener Filter, AHE, NLM, IBP and RL 

perform based on the metrics mentioned. These 

metrics collectively provide a comprehensive 

assessment of the performance of image restoration 

algorithms. PSNR emphasizes fidelity to the 

original image's details, SSIM captures structural 

similarity perceptually, MSE focuses on pixel-wise 

accuracy, FSIM evaluates feature preservation, and 

UIQI addresses overall image quality maintenance. 
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Fig. 9: PSNR comparison graph 

In the PSNR comparison graph (in Figure 9), 

Peak Signal-to-Noise Ratio (PSNR) values are 

plotted on the y-axis, while various image 

restoration algorithms are represented on the x-axis. 

PSNR serves as a crucial metric for assessing the 

quality of restored images, with higher PSNR 

values signifying superior image fidelity. The 

comparative analysis of these image restoration 

algorithms reveals insightful findings. The Wiener 

Filter, with a PSNR of 10.5, offers a balanced 

approach between noise reduction and image detail 

preservation. Adaptive Histogram Equalization 

(AHE) achieves a PSNR of 10.8, indicating strong 

performance in scenarios with non-uniform 

illumination. Non-Local Means (NLM) exhibits a 

PSNR of 10.3, showcasing its effectiveness in 

denoising applications and detail preservation. 

Iterative Back Projection (IBP) stands out with a 

PSNR of 11.2, signifying high-quality image 

reconstruction. Richardson-Lucy (RL) leads the 

group with a PSNR of 13, excelling in scenarios 

demanding exceptional image restoration quality. 

This comparative analysis underscores the 

importance of selecting the most suitable image 

restoration algorithm based on specific application 

requirements, with RL and IBP as top choices for 

high-fidelity image reconstruction, while AHE, 

NLM, and Wiener Filter offer viable options for 

various other restoration tasks. 

In the SSIM comparison graph (in Figure 

10), which portrays the Structural Similarity Index 

(SSIM) values on the y-axis, various image 

restoration algorithms are represented along the x-

axis. SSIM serves as a critical metric for evaluating 

the structural and perceptual similarity between 

restored images and their originals, with higher 

SSIM values indicating a closer resemblance. The 

comparative analysis of these image restoration 

algorithms provides valuable insights into their 

performance. The Wiener Filter achieves an SSIM 

of 0.062, indicating its ability to retain some 

structural features in the restored images but with 

notable deviations. Adaptive Histogram 

Equalization (AHE) exhibits an SSIM of 0.172, 

demonstrating strong performance in preserving 

image structure and enhancing contrast. Non-Local 

Means (NLM) achieves an SSIM of 0.152, 

signifying its capability to effectively reduce noise 

while retaining structural details. Iterative Back 

Projection (IBP) records an SSIM of 0.15, 

showcasing its proficiency in image reconstruction 

with good structural preservation. Richardson-Lucy 

(RL) presents the group's lowest SSIM at 0.055, 

suggesting a trade-off between noise reduction and 

structural similarity. This comparative analysis 

underlines the significance of choosing the 

appropriate image restoration algorithm based on 

specific application requirements. AHE and NLM 

excel in structural preservation and noise reduction, 

while IBP offers strong structural fidelity. Although 

restricted in SSIM, the Wiener Filter continues to 

be advantageous in situations where minor 

structural deviations are acceptable, whereas RL is 

ideal when strong noise reduction given preference 

above structural similarity. 

 

Fig. 10: SSIM comparison graph 

 

Fig. 11: MSE comparison graph 
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In the MSE comparison graph (Figure 11), 

where Mean Squared Error (MSE) values are 

depicted along the y-axis, different image 

restoration algorithms are plotted along the x-axis. 

MSE serves as a fundamental metric for 

quantifying the dissimilarity between restored 

images and their originals, with lower MSE values 

indicating closer resemblance. The comparative 

analysis of these image restoration algorithms 

based on their MSE results reveals insightful 

findings. The Wiener Filter yields an MSE of 0.129, 

signifying a moderate level of distortion in the 

restored images. The MSE of Adaptive Histogram 

Equalization (AHE) is 0.122, demonstrating its 

ability to retain the image quality with reasonably 

minimal distortion. The MSE of Non-Local Means 

(NLM) is 0.119, indicating that it effectively 

eliminates noise while maintaining image integrity. 

IBP has the lowest MSE of 0.1, demonstrating its 

ability to recreate images with little distortion. With 

an exceptional 0.062, Richardson-Lucy (RL) has 

the lowest MSE value in the group, suggesting its 

strength in noise reduction and structure 

preservation. This comparison analysis emphasizes 

the significance of selecting the appropriate image 

restoration method based on specific requirements. 

IBP and RL excel in minimizing distortion and 

noise reduction, making them suitable for 

applications demanding high image fidelity. NLM 

strikes a balance between noise reduction and 

image quality, while AHE offers quality 

restoration. The Wiener Filter may be considered in 

scenarios where slight distortion is acceptable, but 

noise reduction is critical. 

 

Fig. 12: UIQI comparison graph 

Figure 12 shows our UIQI comparison chart, 

which shows Universal picture Quality Index 

(UIQI) values on the y-axis and several picture 

restoration strategies on the x-axis. UIQI is crucial 

in assessing recovered picture quality, with higher 

UIQI values indicating greater restoration. 

Analyzing image restoration techniques with UIQI 

findings provides critical performance insights. The 

Wiener Filter obtains a good UIQI of 0.325, 

suggesting that picture restoration quality is 

adequate. Adaptive Histogram Equalization (AHE) 

outperforms with a UIQI of 0.4, demonstrating its 

ability to restore and preserve picture quality. Non-

Local Means (NLM) gets a UIQI of 0.35, 

suggesting adequate restoration quality but falling 

short of AHE. Iterative Back Projection (IBP) 

follows closely behind with a UIQI of 0.36, proving 

its capacity to generate high-quality results. 

Notably, Richardson-Lucy (RL) leads the group 

with the highest UIQI value of 0.37, signifying its 

exceptional capability to deliver superior image 

restoration quality. This comparative analysis 

underscores that the choice of an image restoration 

algorithm should be made based on the specific 

requirements of the task. RL and IBP stand out for 

applications that demand high-quality image 

restoration, with RL being the top performer in this 

regard. AHE is suitable when achieving the highest 

possible image quality is crucial, while NLM offers 

a balance between restoration quality and 

computational efficiency. The Wiener Filter, while 

effective, may be preferred when a good balance 

between quality and efficiency is required. 

 

Fig. 13: FSIM comparison graph 

In the FSIM comparison graph (Figure 13), 

where Feature Similarity (FSIM) values are 

depicted along the y-axis, various image restoration 

algorithms are plotted along the x-axis. FSIM is a 

critical metric that evaluates the structural 

similarity between restored images and their 

originals, with higher FSIM values indicating better 

preservation of structural details. The comparative 

analysis of these image restoration algorithms 

based on their FSIM results reveals valuable 

insights. The Wiener Filter attains an FSIM of 0.32, 

indicating a decent level of structural similarity in 

the restored images. Adaptive Histogram 
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Equalization (AHE) records an FSIM of 0.28, 

suggesting that it effectively maintains structural 

details while reducing noise. Non-Local Means 

(NLM) exhibits an FSIM of 0.25, indicating good 

noise reduction but with a relatively lower level of 

structural preservation. IBP receives an FSIM of 

0.29, showing that it can replicate pictures with 

good structural resemblance. At 0.36, Richardson-

Lucy (RL) has the highest FSIM value in the group. 

This displays its exceptional ability to preserve 

structural characteristics while efficiently reducing 

noise during image restoration. This comparison 

research emphasizes the need to select an image 

restoration method based on the task's unique 

requirements. RL is appropriate for settings 

requiring noise reduction as well as structural 

protection. In these locations, IBP performs 

similarly, although with a somewhat lower FSIM. 

When structural details are necessary, AHE is 

effective; however, the Wiener Filter can be utilized 

when a balance of structural similarity and noise 

reduction is desired.  While NLM is excellent at 

reducing noise, the recovered images may be less 

structurally similar. 

Table 1: Consolidated Table comprising values of 

Wiener Filter, Adaptive Histogram 

Equalization, Denoising through Non-

Local Means, Iterative Back Projection 

and Richardson-Lucy Deconvolution 

 PSN

R 

SSI

M 

MS

E 

UIQ

I 

FSI

M 

Wiener 

Filter 

10.5 0.06

2 

0.12

9 

0.32

5 

0.32 

Adaptive 

Histogram 

Equalizatio

n 

10.8 0.17

2 

0.12

2 

0.4 0.28 

Denoising 

through 

Non-Local 

Means 

10.3 0.15

2 

0.11

9 

0.35 0.25 

Iterative 

Back 

Projection 

11.2 0.15 0.1 0.36 0.29 

Richardson

-Lucy 

Deconvolut

ion 

13 0.05

5 

0.06

2 

0.37 0.36 

In the comparative analysis of five image 

restoration algorithms, namely Wiener Filter, 

Adaptive Histogram Equalization, Denoising 

through Non-Local Means, Iterative Back 

Projection, and Richardson-Lucy Deconvolution, it 

is evident that Richardson-Lucy Deconvolution 

outperforms its counterparts across multiple 

metrics. With a PSNR of 13, it achieves the highest 

peak signal-to-noise ratio, indicating superior 

image quality. Additionally, its SSIM of 0.055 and 

MSE of 0.062 demonstrate a commendable balance 

between structural similarity and mean square 

error. The UIQI and FSIM values of 0.37 and 0.36, 

respectively, further affirm the algorithm's 

effectiveness in preserving image information and 

fidelity. In contrast, while the other algorithms 

show competitive performance, they fall short of 

Richardson-Lucy Deconvolution in delivering a 

comprehensive solution for image restoration. 

Hence, based on the comparative analysis, 

Richardson-Lucy Deconvolution emerges as the 

most promising algorithm for image restoration 

tasks. 

6. Conclusions 

Our extensive comparative analysis of five 

leading image restoration algorithms—Wiener 

Filter, Adaptive Histogram Equalization (AHE), 

Denoising through Non-Local Means (NLM), 

Iterative Back Projection (IBP), and Richardson-

Lucy (RL) Deconvolution—has provided valuable 

insights into their distinct strengths and 

weaknesses. The Wiener Filter demonstrates 

versatility by balancing noise reduction and image 

detail preservation, while AHE excels in non-

uniform illumination scenarios, enhancing contrast 

and visual quality. NLM effectively denoises while 

preserving structural details through non-local 

similarities. IBP stands out for high-quality image 

reconstruction, and RL excels in noise reduction 

and structural preservation. Practically, the choice 

of an image restoration algorithm should align with 

specific application requirements. For scenarios 

emphasizing high-fidelity image reconstruction, 

RL Deconvolution and IBP emerge as top choices. 

AHE, NLM, and the Wiener Filter offer viable 

options for restoration tasks requiring a balance of 

efficiency and quality. Looking forward, the field 

should explore hybrid approaches leveraging the 

strengths of multiple algorithms and focus on real-

time implementations and optimizations, 

particularly in resource-constrained environments. 

The integration of machine learning techniques for 

adaptive algorithm selection based on image 

characteristics represents a promising avenue for 

future research. In conclusion, considering the 

diverse landscape of image restoration applications, 

Richardson-Lucy Deconvolution stands out as a 

versatile choice, excelling in high-quality image 

reconstruction, noise reduction, and structural 

preservation. 
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