
Pak. J. Engg. Appl. Sci. Vol. 31 July, 2022 (p.109-121) 

109 

Detection of Productive Oceanic Areas in the Arabian 
Sea and Persian Gulf Based on Reconstructed Satellite-

Derived Sea Surface Temperature and Chlorophyll-a 
Faisal Ahmed Khan1*, Mengmeng Yang2, Tariq Masood Ali Khan1, Moazzam Ali Khan1 

1. Institute of Environmental Studies, University of Karachi, Karachi 75270, Pakistan 

2. School of Information Science and Technology, Taishan University, China 

 Corresponding Author:   Email: faisal_ahmad_khan@hotmail.com 

Abstract 

Productive oceanic areas are rich in phytoplankton biomass, and they support a large degree of 

biodiversity. Therefore, it is necessary to detect productive oceanic areas to better understand their 

marine ecosystems. These areas are distinguished from other areas by their more frequently elevated 

sea surface chlorophyll-a concentrations (Chl-a) and colder sea surface temperatures (SSTs). Satellite 

remote sensing techniques are effective tools for ocean applications owing to their broad synoptic 

coverage and frequent observations. However, satellite data often include missing spatial gaps due to 

adverse weather conditions. In this study, monthly Moderate Resolution Imaging Spectroradiometer 

(MODIS)-Terra SST and Chl-a datasets were reconstructed using the Data Interpolating Empirical 

Orthogonal Functions (DINEOF) method to investigate their spatiotemporal variability and 

correlations in the Arabian Sea and the Persian Gulf (ASPG) region, which were divided into seven 

zones with three stations in each zone. Our results revealed that the Chl-a concentrations were much 

higher during the southwestern (SW) monsoon season and that the Chl-a concentration and SST 

exhibited a negative correlation at almost all of the stations. Furthermore, the frequency of positive 

Chl-a anomalies was calculated for each pixel, and the data points with frequencies of higher than 

50% were regarded as productive oceanic hotspots. Maps of the average wind and Ekman transport in 

July were also produced and most of the hotspots were located in the upwelling regions in the ASPG, 

which confirms the impact of the upwelling associated with the wind in the productive oceanic areas. 

The results of this study provide a foundation for marine resource mapping and for effective usage of 

the ocean productivity in this region. 

Keywords: marine productivity, MODIS-Terra, data interpolation, sea surface temperature, 

chlorophyll-a, upwelling, Arabian sea and Persian gulf 

1. Introduction

Productive oceanic areas are often 

recognized as rich areas of persistent surface 

chlorophyll-a (Chl-a). Fishes and other secondary 

consumers, such as birds and turtles, are more 

likely to be abundant in these areas [1]. In 

addition, these areas have a discrete nature in 

terms of their distinctive abiotic and biotic 

characteristics [2]. Therefore, detection of 

productive oceanic areas is very important for 

understanding a marine environment and its 

biodiversity. 

Persistent high chlorophyll-a (Chl-a) 

concentrations and low sea surface temperatures 

(SSTs) can be used to detect productive oceanic 

areas [3]. Satellite-derived data have proven to be 

an adaptable source of information for recognizing 

sea surface biological dynamics, and thus, they are 

used as a method of predicting productive marine 

areas. In addition, biotic and abiotic information 

about sea surface water can be analyzed to explain 

the primary productivity, which is prophetic for 

determining further biological networks linked to 

the surface water [1]. Ekman transport plays a 

vital role in regulating the oceanic biota; therefore, 

upwelling indices computed using wind-based 

calculations for each data point [4] may provide an 

intrinsic seasonal perspective of the oceanography 

of a region. Therefore, the joint investigation of 

satellite SST data, the Chl-a concentration, and 

wind data can enhance our understanding of the 

formation of persistent productive marine zones 

[5]. 

The utilization of satellite data, such as SST, 

Chl-a, and sea surface height (SSH) data, are very 

useful in terms of the temporal and spatial 

resolution. Continuous data in both space and time 

are desired by oceanographers to gain integrated 

knowledge of a marine ecosystem. However, 

satellite-derived data often include spatial gaps 

owing to adverse weather conditions, such as 
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clouds and rain. To overcome this problem, 

extensive studies have been conducted. One study, 

for the Arabian Sea, which mentioned the issue of 

cloud and its consequences for usibility of 

oceanographic data sets [6]. Some computational 

techniques are very convenient in terms of 

increasing satellite oceanographic data [7], [8]. For 

example, Empirical Orthogonal Function (EOF) 

analysis is one of the appropriate techniques for 

resolving the missing data problem [9]. Empirical 

Orthogonal Function (EOF) analysis look for co-

variability inside a data set and develops new 

compound variables that encapsulate that internal 

dependency to characterize the data's variability. 

The decomposition of space- and time-distributed 

data into modes sorted by their temporal variance 

is accomplished using EOF analysis, which is 

typically used to oceanographic and 

meteorological data sets [10]. Another robust 

method is the Data Interpolating Empirical 

Orthogonal Functions (DINEOF) [11], which has 

been widely applied to oceanographic satellite 

data. 

The Arabian Sea and Persian Gulf (ASPG) 

(10–30° N, 50–75° E) (Fig. 1a) are very versatile 

in terms of the physical and biological fluctuations 

in their coastal and open sea areas. The 

oceanography of the ASPG is mainly based on a 

periodic monsoonal wind pattern. Specifically, the 

magnitude and direction of the wind result in the 

different oceanographic parameters and 

geographical features of the sea water having 

seasonal characteristics. Therefore, this region can 

be divided into two classes of water, i.e., coastal 

water and open sea water [12]. In addition, during 

the southwestern (SW) monsoon season, satellite 

data are often not available. Previous studies have 

investigated the basic marine biological 

productivity in the Arabian Sea using conventional 

oceanographic methods and techniques in specific 

areas and seasons, but the spatial and temporal 

scales of these studies were limited [13]. One 

study focused on the impact of the monsoon on the 

marine productivity, and it was found that the Chl-

a variations were associated with the SST 

fluctuations [14]. The wind patterns associated 

with two monsoon seasons, i.e., the southwestern 

monsoon (from July to September) and 

northeastern monsoon (from October to 

December), are linked to the variability of the sea 

surface waters [15]. Cruise-based studies have 

revealed that physical forcing, due to temperature 

and density gradients, enhanced the availability of 

nutrients through vertical water movement in some 

seasons, which mainly controlled the oceanic biota 

[16]. 

In this study, our objective was to detect the 

productive oceanic areas in the ASPG using the 

monthly Moderate Resolution Imaging 

Spectroradiometer (MODIS)-Terra SST and Chl-a 

datasets. First, we reconstructed the satellite 

datasets using the globally recognized DINEOF 

technique [7], [17], [18]. Second, the entire study 

area was divided into seven zones based on 

geographical and oceanographic features, and 

then, the seasonal variability of the SST and Chl-a 

and their relationship were investigated in each 

zone. 

Third, the productive oceanic areas were 

detected based on the criteria using the per pixel 

Chl-a frequency [1]. However, we used a different 

approach to calculate the per pixel Chl-a peak 

counts. Then, we set a threshold value, and the 

pixels with values higher than the threshold were 

defined as persistent biologically active points. 

 

Fig. 1: Maps of the study area showing (a) the bathymetry of the region and (b) the locations of all of the 

21 stations in the seven zones in the ASPG region 
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2. Data and Methods 

2.1 Satellite Data and Pre-
Processing 

The study area was divided into seven zones 

(Fig. 1b), and the seasonal variabilities of the SST 

and Chl-a were investigated at 21 stations in these 

zones. To demonstrate the spatial variabilities of 

the SST and Chl-a, all of the stations were 

distributed according to the geographical 

significance. Zone 1 was along the Pakistan 

coastline, which comprises the northern boundary 

of the Arabian Sea. Zones 2 and 3 were located 

nearer to the Indian and Arabian coasts, 

respectively, and they included the eastern and 

western parts of the Arabian sea. Zone 4 was the 

extension of zone 2, and it consisted of the 

southern portion of the Indian coast. Zone 5 was 

along the coast of Yemen, and it extended from 

the coast to the open sea. Zone 6 represented the 

equatorial region at low latitudes. Zone 7 was the 

Persian Gulf region and was bounded by the major 

oil-producing countries of the world.  

The monthly composites of the MODIS-

Terra Chl-a and SST data with a 4 km spatial 

resolution for 2001–2017 were downloaded from 

the National Aeronautics and Space 

Administration (NASA) Ocean Biology 

Processing Group 

(https://oceancolor.gsfc.nasa.gov/). The data 

values for each station were retrieved by averaging 

the values from a 3 × 3 matric centered on the 

station. Then, the seasonal and annual SST and 

Chl-a were generated for each station using 

MATLAB, which is a useful computational tool 

for big datasets. In addition, the correlation 

statistics were calculated for the SST and Chl-a 

time-series for each station. 

2.2 Climatic Data and Pre-
Processing 

The monthly wind data, of horizontal and 

vertical components which is mean of daily mean 

with a spatial resolution of 0.12° and a height of 

10 m above sea level were obtained from the 

ERA-Interim Reanalysis datasets, which were 

produced by the European Centre for Medium-

Range Weather Forecasting (ECMWF). The ERA-

Interim Reanalysis dataset integrates quality data 

sources and computations for the assessment of 

different atmospheric variables at the global scale 

[19]. These monthly wind data were used to 

examine the seasonal variability of the wind in the 

ASPG region. In addition, computations (Eqs. (1) 

and (2)) [4] of the wind data were conducted to 

obtain the Ekman transport components for each 

month during the study period. 

 ETx = 
𝐷𝑎𝑖𝑟 𝑐 (𝑢2+𝑣2)1/2𝑣

𝐷𝑤𝑎𝑡𝑒𝑟 𝑓
 (1) 

 ETy = −
𝐷𝑎𝑖𝑟 𝑐 (𝑢2+𝑣2)1/2𝑢

𝐷𝑤𝑎𝑡𝑒𝑟 𝑓
 (2) 

where u and v represent wind vectors from 

the west (positive u) and from the south (positive 

u), respectively. Dair is the density of air, Dwater is 

the density of water, c is the drag coefficient, and f 

is the Coriolis parameter. The computed ETx and 

ETy, i.e., the components of the Ekman transport, 

were used to plot the Ekman transport for each 

month. The Ekman transport was used to 

understand the upwelling mechanism in the study 

area. 

Upwelling regions, which account for 

approximately half of the worldwide fish 

production [20], play an important role in the 

estimation of the biotic dynamics of a marine 

region. The information extracted from the spatial 

distribution of these active areas can be very 

useful for identifying fish resources. Upwelling 

areas can be characterized by positive surface Chl-

a anomalies and negative SST anomalies owing to 

the vertical movement of nutrient-rich cold 

seawater from the bottom layers. 

2.3 DINEOF 

Satellite data often include spatial missing 

gaps owing to cloud cover or rain, particularly in 

the monsoon seasons. Therefore, the monthly 

datasets were reconstructed using the DINEOF 

method. This technique has been proven to be a 

reliable statistical tool for interpolating missing 

data points in large datasets. The DINEOF method 

involves an iterative technique, which accesses the 

accuracy of the prediction during each repetition 

and selects the optimal prediction with the 

minimum error. Thus, it is a self-sustaining 

technique. 

The main procedure of the DINEOF method 

is described below. 

First, singular value decomposition (SVD) 

is used to calculate the EOFs as follows: 

D = USVT   (3) 

where D is the initial matrix containing all 

data values with missing data points as well, U and 

V represent the spatial and temporal EOFs, 

respectively. S represents the singular values. The 

subscript T’ indicates the transpose of the array. 

Second, the missing data at points i and j 

(Dij) are reconstructed by calculating k modes of 
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the EOFs using the following computational 

equation: 

 Dij = ∑ 𝑆𝑝(𝑈𝑝)
𝑖

𝑝=𝑘

𝑝=1
(𝑉𝑝

𝑇)
𝑗
 (4) 

where Up denotes the spatial EOF, Vp 

denotes the temporal EOF, and Sp denotes the 

singular value for the pth index. 

Third, repeated calculations are performed 

for p from 1 to k to obtain the most accurate 

reconstructed values. 

All of the monthly data were stored in a 3D 

matrix, with dimensions of 480 (latitude) × 600 

(longitude) × 204 (time). For each matrix of 

monthly data, only the sea points were designated 

as valid data points, and the land points were 

excluded from the computation. Before starting 

the DINEOF computations, 1% of the valid data 

were randomly selected and were intentionally 

regarded as missing data. After the DINEOF 

reconstruction, these data were compared with the 

reconstructed data for cross-validation of the 

DINEOF method. 

2.4 Criteria for Productive Oceanic 
Areas 

The Chl-a concentration is a common 

indicator of the phytoplankton biomass [21]. 

Therefore, the satellite-derived Chl-a was selected 

as one of the indicators of productive oceanic 

areas. In the ASPG, the spatial distribution of the 

Chl-a concentration varied with the seasons 

throughout the year. Statistically, the data points 

with persistent above average Chl-a values were 

identified using computational techniques. Then, 

the peak Chl-a counts were estimated for each data 

point, and the data points with a greater than 50% 

probability of peak counts were identified. 

The other two indicators were the Ekman 

transport calculated from the wind data and the 

SST. Upwelling regions often coincide with 

positive Chl-a anomalies and negative SST 

anomalies. Therefore, the combination of the 

surface Chl-a, SST, and wind data were used to 

identify the productivity hotspots. Then, these 

hotspots were confirmed using fishery datasets. 

3. Results 

3.1 DINEOF Reconstruction 

The DINEOF method requires that the 

spatial coverage of the original satellite data is 

greater than 5% [11], [22]. Accordingly, 204 
images were used for both the satellite SST and 

Chl-a. The statistics of the DINEOF reconstruction 

are shown in Table 1. 

One image of the original SST acquired in 

June 2001 and one image of the original Chl-a 

acquired in June 2010 were selected for 

comparison with the reconstructed SST and Chl-a 

(Figs. 2 and 3). In the original data, there were 

many spatial gaps, especially for Chl-a. In 

contrast, the reconstructed data were smooth and 

reasonable. 

3.2 Validation of Reconstructed Data 

The DINEOF method has a built-in cross-

validation tool for validating the accuracy of the 

reconstructed data. In addition, we executed an 

independent cross-validation method. We 

randomly selected 1% of the valid pixels from the 

original satellite-derived SST and Chl-a datasets 

and intentionally regarded them as missing values. 

In addition, we retained the valid values from the 

original datasets and only reconstructed the data 

for the invalid pixels. After the DINEOF 

reconstruction, the reconstructed data were 

compared with the original data from the 

randomly selected dataset (Fig. 4). 

For both the SST and Chl-a, the 

reconstructed and original data exhibited good 

correlations in terms of the coefficient of 

determination (R2), slope, bias, and root mean 

square error (RMSE). In addition, the densities of 

both the SST and Chl-a increased toward the 1:1 

lines. Therefore, the reconstructed SST and Chl-a 

data were determined to be accurate and reliable. 

3.3 Spatiotemporal Variability of 
Satellite SST and Chl-a 

The monthly MODIS SST and Chl-a data 

exhibited strong seasonal variability in the ASPG 

region. Generally, the SST increased from the cold 

season (mid-November to mid-April) to the hot 

season (mid-April to June), decreased in the 

southwestern monsoon season (July to 

September), and then increased in the transition 

period (October to November). In contrast, the 

Chl-a decreased from the cold season to the hot 

season, increased in SW monsoon season, and 

then decreased in the transition period. In this 

study, February, May, August, and November 

were chosen as the representative months in the 

cold, hot, SW monsoon, and transition period, 

respectively (Fig. 5). 
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Table 1: Statistics of the DINEOF computations 

 SST Log10 (Chl-a) 

Dimensions (lat.×long.×time) 480×600×204 480×600×204 

Missing data 1.75% 24.57% 

Number of cross-validation points 334614 334614 

Mean (input data) 27.360 −0.430 

Standard deviation (input data) 1.950 0.410 

Mean (output data) 27.362 −0.424 

Standard deviation (output data) 1.946 0.407 

Total variance explained by EOF 96% 90% 

Number of optimal EOF modes 13 7 

 

Fig. 2: Sea surface temperature in June 2001: (a) original cloudy data and (b) data reconstructed using the 

DINEOF method 

Fig. 3: Log10 (Chl-a) in June 2010: (a) original cloudy data and (b) data reconstructed using the DINEOF 

method 
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Fig. 4: Density plots: (a) SST (original) vs SST (reconstructed) and (b) log10 Chl-a (original) vs log10 Chl-a 

(reconstructed). The white dotted lines are the 1:1 lines 

In addition, the SST and Chl-a exhibited 

opposite spatial variabilities in most of the ASPG 

region. In the cold season, the SST gradually 

decreased from southeast to northwest, whereas 

the Chl-a exhibited the opposite trend. In the hot 

season, the SST was almost uniformly warm in the 

Arabian Sea and was colder in the Persian Gulf. In 

contrast, the Chl-a was lower in the Arabian Sea 

and higher along the coasts of the Arabian Sea and 

the Persian Gulf. In the SW monsoon season, the 

SST was highest in the Persian Gulf, lowest in the 

southwestern part of the Arabian Sean, and 

gradually increased toward the southeastern part of 

the Arabian Sea. In contrast, the Chl-a was lower 

in the Persian Gulf, highest in the southwestern 

part, and gradually decreased toward the 

southeastern part of the Arabian Sea. In the 

transition period, the SST increased from west to 

southeast in the Arabian Sea, whereas the Chl-a 

exhibited the opposite trend. 

3.4 Correlation between Satellite 
SST and Chl-a 

As mentioned above, the entire study area 

was divided into seven zones with three stations in 

each zone (Fig. 1b). For each station, the SST and 

Chl-a time-series were investigated using all of the 

monthly data. In addition, the monthly data were 

averaged for each month, and then, the correlation 

between the SST and Chl-a was analyzed using the 

averaged data. 

Based on the similarity of the correlation 

between the SST and Chl-a, 10 representative 

stations were selected in the seven zones. These 

stations included station 1 in zone 1 (1-s-1), 

station 1 in zone 2 (2-s-1), station 1 in zone 3 (3-s-

1), station 1 in zone 4 (4-s-1), station 2 in zone 4 

(4-s-2), station 1 in zone 5 (5-s-1), station 1 in 

zone 6 (6-s-1), station 2 in zone 6 (6-s-2), station 1 

in zone 7 (7-s-1), and station 2 in zone 7 (7-s-2). 

For zones 1, 2, 3, and 5, all 15 stations 

demonstrated almost the same behavior in terms of 

the trends in and correlations between SST and 

Chl-a during the study period. Taking 1-S-1 as an 

example (Fig. 6a), the time-series of the monthly 

SST data exhibited a dominant annual cycle, 

except for a few anomalies in some years. The 

annual cycles were clearly observed, and the SST 

and Chl-a values exhibited two peaks almost every 

year. The SST exhibited one peak in summer 

(June) and the other in the wind transition period 

(October) after the SW monsoon. Chl-a exhibited 

the first peak in February and the second peak in 

September. Similarly for 2-s-1 (Fig. 6c), the SST 

exhibited peaks in June and October, and the Chl-a 

exhibited peaks in January and August. For 3-s-1 

(Fig. 6e) and 5-s-1 (Fig. 6k), the maximum SST 

values occurred in May and October, and the 

maximum Chl-a values occurred in February and 

August. The correlation between SST and Chl-a 

was negative despite a lag of one month at some 

stations (Figs. 6b, d, f, i). 

For 4-S-2 and 6-S-2, the monthly SST and 

Chl-a also exhibited a negative correlation. 

However, the maximum Chl-a values were much 

lower than at the stations at higher latitudes. 

During the study period, the Chl-a values at these 

two stations ranged from 0.1 to 0.5 mg m−3. In 

addition, the monthly SST and Chl-a exhibited 

increasing and decreasing trends, respectively, 

throughout the entire study period. 

A direct correlation between SST and Chl-a 

was observed at three stations. These stations 
included 4-S-1 (Fig. 6g), 6-S-1 (Fig. 6m), and 7-S-

2 (Fig. 6s). In contrast to 7-S-2, the SST and Chl-a 
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Fig. 5: Images of the monthly averages calculated from reconstructed MODIS data sets (a) SST and (b) 

Chl-a 

exhibited a negative correlation at 7-S-1 (Fig. 6q). 

In addition, at 4-S-1, the SST and Chl-a both 

exhibited peaks in May and October. At 6-S-1, the 

SST exhibited peaks in April and October, and the 

Chl-a exhibited peaks in August and October. At 

7-S-2, the SST and Chl-a exhibited peaks in 

August and September, respectively; whereas at 7-

S-1, the SST exhibited a peak in July and the Chl-

a exhibited a peak in February. 

Considering the entire study area, the SST 

and Chl-a exhibited increasing and decreasing 

trends, respectively, at almost all of the stations 

(Fig. 6). The monthly time series data for Chl-a 

demonstrated that the seawater was more 

productive during the SW monsoon seasons. In 

addition, for the stations nearer to the equator, the 

SST values were higher and exhibited fewer 

variations compared to the higher latitude regions 

throughout the year. In contrast, very low Chl-a 

concentrations (less than 1 mg m−3) were detected 

at these stations. In addition, the Chl-a and SST 

were negatively correlated despite the low Chl-a 

values. 
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Fig. 6: Time-series plots of the SST and Chl-a at the selected 10 stations using (a, c, e, g, i, k, m, o, q, and 

s) all of the monthly data and (b, d, f, h, j, i, n, p, r, and t) the average monthly data. 1-S-1, 2-S-1, 3-

S-1, 4-S-1, 4-S-2, 5-S-1, 6-S-1, 6-S-2, 7-S-1, and 7-S-2 represent station 1 in zone 1, station 1 in 

zone 2, station 1 in zone 3, station 1 in zone 4, station 2 in zone 4, station 1 in zone 5, station 1 in 

zone 6, station 2 in zone 6, station 1 in zone 7, and station 2 in zone 7, respectively 

3.5 Distribution of Productive 
Oceanic Areas 

The monthly Chl-a datasets were assessed 

to identify the persistent biologically active 

regions by calculating the frequencies of the 

positive anomalies for each pixel. The data points 

with frequencies of > 0.5 were considered to be 

persistently productive. Accordingly, an image 

showing the positive Chl-a anomaly frequency 

was produced (Fig. 7). It was estimated that 22% 

of the ASPG region were productive hotspots of 

primary productivity. 

4. Discussion 

4.1 DINEOF Reconstruction of 
MODIS SST and Chl-a in the 
ASPG 

Oceanographic satellite datasets often 
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Fig. 7: Map of frequency of positive Chl-a anomalies (per month) in the ASPG. 

include missing spatial gaps, which restricts the 

continuous long-term analysis of oceanic biota. In 

addition, this problem can result in some particular 

time based events going unnoticed. To overcome 

the issue of missing data points, the DINEOF 

method has been widely used, and it has been 

found to be reliable for interpolating 

oceanographic data to conduct long-term studies 

[23][24][7]. Reconstructed data can be utilized for 

the improvement of earlier studies by examining 

the biological productivity in unexplored seasons 

and regions due to missing data points [12]. 

Application of the DINEOF method in the 

ASPG under these temporal and spatial scales is 

exclusive to identifying marine productivity 

hotspots. This is because 1) continuous in-situ 

marine data for this region are lacking; and 2) 

previous studies used limited seasonal datasets 

with low spatial and temporal resolutions [15]. 

Recently, a study was conducted to reconstruct the 

sea surface Chl-a in the Arabian Sea using 8-day 

satellite data, and it was found that the DINEOF 

method was a reliable technique for creating a 

gap-free satellite dataset [25]. In this study, we 

focused on using monthly satellite data for the 

biotic and abiotic components reconstructed using 

the DINEOF method to identify the marine 

productivity hotspots in the ASPG. These hotspots 

can provide a firm basis for marine resource 

mapping in this area [24]. In addition, the coastal 

communities in this region that rely on ocean 

resources can be provided with information about 

the spatial distribution of the productive regions. 

The validation of the use of the DINEOF 

method in the ASPG revealed that the 

reconstructed data are accurate and reliable (Fig. 

4). Accordingly, the reconstructed datasets provide 

a dependable consistent source of SST and Chl-a 

imagery for investigating the spatiotemporal 

variabilities of the SST and Chl-a and for 

identifying the productive oceanic areas. 

4.2 Mechanisms of the 
Spatiotemporal Variabilities of 
the SST and Chl-a 

The ASPG region is controlled by two 

wind patterns linked to two monsoon seasons (i.e., 

the SW and NE monsoon seasons). These winds 

highly influence the physical properties of the sea 

surface. This can be seen from the seasonal spatial 

distributions of the SST (Fig. 5). In the SW 

monsoon season, the wind caused the surface 

water to drift from the Arabian coast, which 

trigged upwelling and a decrease in the SST due to 
vertical movement of cold water from the bottom 

layer. The low temperature and Chl-a rich water 
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extended from the coast to the open sea. In 

contrast, in the Persian Gulf region, the 

stratification strengthened from summer to winter 

due to the lack of influence by the wind (Azizpour 

et al., 2014). 

The sea surface chlorophyll-a distribution in 

the ASGP was strongly influenced by the seasonal 

cycle of the wind. For the entire year, the SW and 

NE winds, as well as the transition period in-

between, defined the overall patterns of the Chl-a 

distribution. Upwelling brought nutrient-rich water 

to the surface, which enhanced the biological 

activity, resulting in high Chl-a concentrations, 

which extended from the coast to the open sea. 

This upwelling caused the high Chl-a 

concentrations in August in this region. In 

addition, the impacts of human interactions and 

freshwater discharge into the sea were also 

noticeable near the densely populated 

communities, such as the Karachi [27] and 

Mumbai ports [28]. 

In this study, results of the analysis of the 

correlation between the SST and Chl-a were 

consistent with the results of previous studies [12], 

and the correlation between these two variables 

was found to be negative in most of the study area. 

Because we used monthly data, the biological 

response in the sea surface to the variation in the 

SST may have lagged between two consecutive 

months [29]. As the results show (Fig. 6), the Chl-

a peak in October lagging behind the SST peak in 

September at the stations where the correlation 

between the SST and Chl-a was negative. In zone 

3, the Arabian coastlines are well-known for 

upwelling mechanisms all over the world, and 

hence, they contribute to the intense biotic activity 

at the western edge of the Arabian sea [30]. The 

summer monsoon exhibited evidence of 

upwelling, which transported the seawater from 

the lower column to the sea surface, increasing the 

Chl-a concentrations of the cold waters seen in the 

SST images (Fig. 5).  

4.3 Detection of Productive Oceanic 
Areas in the ASPG 

In this study, the unit of time was one 

month, the frequency of persistent high Chl-a 

values and low SST values at all of the sea data 

points was computed. The consistent frequency 

peaks for each data point were used to identify the 

biologically active regions, which were considered 

to be ocean productivity hot spots. The MODIS 

data for the sea surface, which can be used to 
estimate the biotic resources in a wide area, were 

used to estimate the biological productivity in this 

region. 

The biotic components of a seawater 

environment are provided by minerals, and the 

spatial distributions of these minerals are highly 

influenced by the vertical and horizontal 

movements of the water masses. The seasonal 

variability of the distributions of these nutrients in 

the different water layers, from the bottom to the 

surface, can be determined and can be used to 

identify specific areas with a consistent abundance 

of these minerals [3]. Since the surface water is 

exposed to sunlight, the regions with rich nutrients 

are likely to be more productive, with high surface 

Chl-a values. 

The perpetual presence of high Chl-a values 

indicates the productive oceanic areas in the 

ASPG (Fig. 7). As was previously discussed, the 

ASPG region is influenced by unidirectional 

seasonal winds. In particular, during the SW 

monsoon season, the consistent wind pattern 

causes upwelling, which enriches the surface 

water in nutrients and enhances the biological 

activity (Fig. 8). In comparison, most of the data 

points with a higher probability of above-average 

Chl-a values are located in the upwelling regions. 

High Chl-a values are considered to be a 

proxy for large populations of phytoplankton, 

which serve as the foundations of all food chains 

in marine ecosystems [21]. Thus, the data points 

with persistently elevated Chl-a values are marine 

productivity zones. However, auspicious stations, 

for example, the northeastern coast and 

southwestern region, with biotic activeness and 

retention require further attention.  

5. Conclusions 

Productive oceanic areas are characterized 

by low sea surface temperatures and high Chl-a 

concentrations. In this study, monthly MODIS-

Terra SST and Chl-a datasets were precisely 

reconstructed using the DINEOF technique, and 

then, they were used to identify the productive 

oceanic areas in the ASPG region. The entire 

study area was divided into seven zones, and the 

seasonal variability of the Chl-a and SST and their 

correlation were analyzed in each zone to 

understand the formation of biologically active 

areas. Furthermore, the probability of the sea 

surface Chl-a concentration being above the 

average value was calculated for each data point, 

and the data points with a probability of greater 
than 50% were regarded as ocean productivity 

hotspots. 
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Fig. 8: (a) Average wind in July and (b) average Ekman transport in July. 

Twenty-two percent of the data points were 

found to be biologically active in the ASPG region 

during the entire study period, and the clusters of 

these points were considered to be marine 

productivity hotspots. The most prominent 

sections were the southwestern region, 

northeastern coastal belt, and several patches in 

the gulf area. Regarding the temporal distribution 

of the productivity hotspots, the month of July 

contributed to the productive sea surface water due 

to the enhanced wind speeds. In addition, the SW 

monsoon season was found to be a much more 

productive period, with an evident upwelling 

mechanism associated with the speed wind in this 

region [31]. Although the increased SST supported 

the low surface Chl-a concentrations, the 

upwelling mechanism in the active areas led to 

high values in specific seasons, which is similar to 

the results of a previous study [5]. 

The results of this study provide basic 

insights into the biology of the surface waters in 

the ASPG based on a gap-free satellite-derived 

SST and Chl-a datasets. Based on the identified 

productive areas, further research can be 

conducted to investigate the different associated 

secondary food chains. In the future, fishery 

and/or seabird data can be utilized to enhance our 

understanding of the oceanography in the ASPG 

region. 
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