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Abstract 

Filters represent a class of feature selection methods used to select a subset of useful features from high 
dimensional data on the basis of relevance and redundancy analysis. Maximum relevance minimum redundancy 
(mRMR) is a famous feature selection algorithm for microarray data [1]. The quotient based version of 
maximum relevance minimum redundancy (Q-mRMR) filter [1],[2] selects, at each iteration, the feature scoring 
maximum ratio between its class relevance and average redundancy over already selected subset. This ratio can 
be surprisingly large if the denominator i.e. redundancy term is very small, hence suppressing the effect of 
relevance and leads to the selection of features which can be very weak representatives of the class. This paper 
addresses this issue by presenting a maximum relevance maximum antiredundancy (mRmA) filter method. For 
mRmA the value of objective function is within reasonable limits for all values of relevance and redundancy, 
hence, making selection of appropriate features more probable. Our 10 fold cross validation accuracy results 
using naive Bayes and support vector machines (SVM) classifiers confirm that the proposed method 
outperforms both Q-mRMR and Fast Correlation based Filter (FCBF) methods on six datasets from various 
applications like microarray, image and physical domains. 

Key Words: Feature selection, filter, Gene expression data, Image, Support vector machine, Naive   
bayes.

1. Introduction 

In real world applications, datasets with very large 
number of features [3],[4] have become common 
these days. Analyzing such data for classification 
tasks not only questions the computational 
capability of the classifier but also adversely 
impacts its accuracy [3],[5]. However, not all 
features present in a dataset have the same worth. 
Those which help in class discrimination are 
relevant while those that do not provide additional 
information are redundant [6]. Since, the class 
discrimination capability of irrelevant features is 
poor, a method which reduces the size of the data 
by eliminating redundant and irrelevant features is 
highly desirable. One way to attain dimensionality 
reduction is feature selection; it selects a subset of 
features most relevant for the class variable while 
keeping their original meanings intact [3],[7]. A 
lot of research has been done on this topic over the 
last decade; researchers are continuously trying to 
find a strategy which can be generalized for all 
types of data. 

Feature selection has applications in a wide variety 
of domains like biomedical [5], text [3] and 
images [4] etc. For microarray gene expression 
datasets where the number of features reach up to 
several thousand [8],[9] obvious advantage of 
selecting most important features/ genes saves 
computational cost in addition to making data 

more interpretable and improving classification 
accuracy by removing redundant features [10]. 
Among the feature selection algorithms proposed 
in the literature, filters are well-known. The 
quotient based maximum relevance minimum 
redundancy feature selection (Q-mRMR) method 
proposed by Peng et. al.[1],[2] is very popular 
especially in bioinformatics. The method searches 
for a subset having maximum class relevance and 
minimum inter-feature redundancy. Heuristic 
presented for obtaining this subset starts by 
picking the most relevant feature; the next feature 
is added on the basis of maximum ratio between 
its class relevance and average redundancy with 
the already selected feature(s). Peng et al [1] have 
demonstrated that Q-mRMR is, under various 
settings, more accurate than distance based 
mRMR. However, a shortcoming of Q-mRMR is 
that its objective function takes on unexpectedly 
large values for small values of redundancy. This, 
in certain situation, may compel the method to 
prioritize less relevant features over more relevant 
ones and hence can affect the classification 
accuracy of the generated subset. In this paper, we 
propose a method to overcome this issue using an 
anti-redundancy term instead of a redundancy 
term. Unlike Q-mRMR, the values taken by the 
objective function of our method are between zero 
and one and the features are selected in a balanced 
way giving equal priority to both relevance and 
redundancy. To investigate the usefulness of the 
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newly proposed method, we carry out experiments 
on six datasets from various application domains 
using Naive Bayes and support vector machine 
classifiers. 

The rest of the paper is organized in five sections. 
In Section 2, work related to feature selection is 
presented. Section 3 describes our proposed 
algorithm along with its motivation. In Section 4, 
we present the experimental settings used for this 
work while results are presented in Section 5. We 
draw conclusions of this work in Section 6. 

2. Related Work 

Feature selection algorithms can broadly be 
divided in three classes; wrapper, filter and 
embedded depending on how a subset of the most 
relevant features is searched. Wrappers [6] search 
the feature space exhaustively with the help of a 
classifier. The feature subset producing the highest 
accuracy is finally selected; selecting a set of 
highly relevant and least redundant features is 
quite probable but over-fitting on training data, 
being dependent on the classifier used and large 
computational expense are considered to be their 
major disadvantages [1],[6]. 

Filters [3],[11] select a feature subset by 
maximizing an objective function which employs 
some metric for estimating the relevance and 
redundancy of features. The method is 
independent of a classifier and requires fewer 
computations than the wrapper [3]. It is the most 
popular method in feature selection community 
and has been extensively investigated in the 
literature [12],[13]. Unlike wrappers and filters, 
embedded methods integrate the task of feature 
selection and classification in one step [5]. For 
example, in recursive feature elimination (RFE), 
weights assigned by the support vector machines 
(SVM) classifier to each feature are used as 
ranking weights; features with the top weights are 
selected at each step [5]. 

The aim of feature selection is to obtain small 
subsets of features highly correlated with the class 
and uncorrelated with each other [14]. There can 
be a number of metrics used for calculating 
relevance and redundancy e.g. mutual information 
[15],[13], symmetric uncertainty [16] or Pearsons 
correlation coefficient [17]. Different metrics 
estimate relevance and redundancy differently thus 
resulting in different performances for the filters 
[11]. Peng et. al.[1], [2] propose mutual 
information for both relevance and redundancy in 
case of discrete data, whereas for continuous data, 
they use F-test correlation Quotient [2] to calculate 
class relevance and Pearsons correlation 

coefficient to determine redundancy between two 
features. Koller and Sahami [7] discover Markov 
Blanket of features on the basis of correlation and 
retain a set of relevant features through backward 
elimination. To make filters computationally more 
feasible, many filters select features in two stages 
and drop the low ranked features in their first step 
[16], [18]. For example Liu et. al.[16] proposed 
fast correlation based feature selection (FCBF) 
method which proceeds in forward direction and 
eliminates a feature if its class relevance is smaller 
than its redundancy with the most recently 
selected feature. 

Brown et. al.[19] present a unifying feature 
selection method based on mutual information. 
They conclude that for small datasets, joint mutual 
information (JMI) method proposed by Yang and 
Moody [20] is optimum in terms of accuracy, 
stability and flexibility. Mahmoud et. al.[18] and 
Apiletti et. al.[21] rank features on the basis of 
inter class overlapping score; they determine a 
mask for the complete dataset and search for the 
subset whose mask is the same as of reference 
mask. 

Ooi et. al.[22] suggest finding an optimal subset of 
features by tuning an exponential parameter over 
relevance, redundancy and anti-redundancy terms. 
The anti-redundancy term is obtained by 
subtracting redundancy from 1. Relevance is 
calculated on the basis of F-score statistic between 
a feature and the class and redundancy between 
two features is calculated on the basis of Pearson 
correlation coefficient. They propose two variants, 
one is redundancy based (Equation 1) and the 
other is based on anti-redundancy (Equation 2). 
The feature selection heuristic is the same as 
proposed by Peng [2]. 

��� =
(���������)�

(����������)���
 

(1) 

��� = (���������)� ∗ (��������������)��� (2) 

where ���is their proposed feature selection 
approach using relevance and redundancy whereas 
��� is the feature selection using relevance and 
anti-redundancy. Optimum value of the exponent 
α which yields highest accuracy is found 
empirically for various datasets. They further 
conclude that ��� outperforms ��� in general. 

3. The Newly Proposed Maximum 
Relevance Maximum Anti-
redundancy (mRmA) Feature 
Selection Algorithm 

In this section, we propose a feature selection 
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method inspired by quotient based maximum 
relevance minimum redundancy (Q-mRMR) filter 
proposed by Peng et. al.[2]. Q-mRMR filter selects 
a feature if the ratio between its class relevance 
and average redundancy over the set of already 
selected features is maximum in that iteration. 
Equation 3 describes how its objective function 
selects the ���feature. 

����� = ����∈���� �
�(�, �����)

�

|�|
∑ ��∈� (�, �)

� 
(3) 

Were, ���� refers to the list of features not selected 
so far, and � is the subset of already selected 
features at any iteration. �(�, �����) shows class 
relevance of a feature taken from the list and 
�(�, �) shows redundancy between the ��� feature 
and the ��� feature which belongs to the subset of 
already selected features. The feature that 
produces the highest value of this ratio is selected. 
For Q-mRMR, if data is continuous, relevance is 
calculated as F-score between a feature and the 
class and average redundancy term is the average 
of Pearsons correlation coefficient calculated 
between the feature under consideration and all the 
features already selected. On the other hand, for 
discrete data, both relevance and redundancy are 
based on mutual information. 

Since the redundancy term in Q-mRMR(Equation 
3) is in the denominator, its very small value can 
result in a very large value of the objective 
function even for small values of relevance; this 
will force Q-mRMR to select features that are 
weakly related to the class. A feature with low 
redundancy with the existing set but of lower 
relevance for the class will be assigned a higher 
score as compared to a highly relevant feature 
having moderate redundancy with the selected 
features. 

To address this issue, we propose an anti-
redundancy based maximum relevance minimum 
redundancy (mRmA) feature selection algorithm 
which is a variant of Q-mRMR. In Section 3.1, we 
elaborate this idea with the help of a motivating 
example. The anti-redundancy term is obtained by 
subtracting the redundancy term from 1 and the 
objective function maximizes product of relevance 
and anti-redundancy terms as given in Equation 4. 

���� = ����∈���� ��(�, �����)

×
1

|�|
�[1 − �(�, �)]

�∈�

� 

(4) 

3.1 A Motivating Example 

Q-mRMR does not fairly rank features when the 

average redundancy with respect to the already 
selected feature set is very small. Since this term is 
in the denominator, a small value generates a large 
value for the fraction and the role of relevance 
term in numerator is suppressed. To understand 
this idea, lets take the help of a synthetic dataset 
shown in Table 1. The data is continuous with 3 
features, 6 instances and 2 classes. As shown in 
Figure 1, the class is clearly segregated by features 
x and y because there is no overlap in the values of 
features for class 0 and class 1. This indicates that 
these two features have good class relevance. 
Pearson correlation coefficient which is used by 
both Q-mRMR and mRmA assigns x a score equal 
to 0.72 while y has a score 0.84. The third feature 
z is weekly related with class; this is because its 
values for both classes overlap each other more 
than 60% of the time which results in its small 
class relevance equal to 0.19. 

Both Q-mRMR and mRmA start by first selecting 
the top ranked feature which is y for the dataset 
shown in Table 1. Out of x and z, Q-mRMR 
employs the search technique described in 
Equation 3 for the selection of the next feature 
while mRmA uses Equation 4. Q-mRMR selects 
feature z while our proposed algorithm mRmA 
selects x as the second feature. Feature x is highly 
relevant for the class and has a reasonably small 
redundancy equal to 0.3728 with the already 
selected subset (which is feature y at the moment). 
On the other hand, z has small class relevance and 
very small redundancy equal to 0.0925 with 
already selected feature y. The objective function 
of Q-mRMR assigns a higher score to z and 
selects it. The final ranking generated by Q-
mRMR is < y, z, x > whereas mRmA prefers x 
over z. The ranked list of features of mRmA is 
given by < y, x, z >. This shows that in certain 
cases Q-mRMR prefers weakly relevant features 
on strongly relevant features which can lead to 
degradation in the accuracy of selected subset. 

3.2 Understanding mRmA 

To further highlight the differences between the 
working of the objective functions of Q-mRMR 
and mRmA, we refer to Figures 2, 3 and 4. The 
values of objective function for Q-mRMR ranges 
from 0 to a very large number while those of 
mRmA lies in the [0 1] range. We scale the values 
of the Q-mRMR objective function between 0 and 
1. This allows us to plot both the objective 
function values on the same scale, thus providing 
insight into the working of Q-mRMR and mRmA. 
In both images shown in Figure 2, relevance is 
plotted against redundancy. The values taken by 
the objective functions for Q-mRMR and mRmA 
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are shown as shades of varying intensities. Using 
the convention of image processing, complete 
black means zero and complete white refers to 
value equal to 1 [23]. All gray shades in between 
these two extremes represent values between 0 and 
1. In each image, bottom left corner is the origin, 
relevance increases by moving to the right on 
horizontal axis and redundancy increases by 
moving up on vertical axis; both vary from 0 to 1 
with a step of 0.1. It can be seen in Figure 2(a) that 
the last row, which belongs to very small values of 
redundancy, is significantly brighter than the rest 
of the image. This forces the feature selection 
algorithm to select features having low 
redundancy by giving less importance to class 
relevance. 

��	����������→ 0 

���������	��������(�����) → ∞ 

In contrast to Q-mRMR, uniformly varying gray 
values pertaining to redundancy = 0 in Figure 2(b) 
show that the objective function of our proposed 
mRmA becomes equivalent to class relevance 
based feature selection for such small values of 
redundancy 

��	����������→ 0 

���������	��������(�����) → ���(�) 

curves/lines for Q-mRMR and mRmA each, with 
redundancy plotted against the values taken by the 
objective functions for a given value of relevance. 
We vary relevance from 1 to 0 with a step of 0.1. 
For mRmA, the blue straight lines indicate the 
variations in its objective function. It can be seen 
that all these lines are linearly decreasing from a 
maximum value to zero. This maximum value is 
directly proportional to relevance meaning that for 
large values of relevance the objective function 
generates values in a large range and vice versa, 
which is quite intuitive. 

For relevance equal to zero, the value generated by 
objective function is also zero. On the other hand, 
the red curves in the Figure 3 correspond to Q-
mRMR. These lines indicate the non-linearly 
decreasing behavior of the objective function with 
increasing redundancy. The maximum value is set 
by the relevance but the fall is so sharp that the 
objective function saturates (starts generating very 
small and almost equal values) as the redundancy 
increases just beyond zero. 

It can be further seen in Figure 3 lines 
corresponding to various values of relevance are 
significantly gapped away for mRmA whereas 
these are indistinguishable for Q-mRMR. 
Moreover, if we move along x-axis from 

redundancy = 1 to redundancy = 0 the vertical gap 
between the values taken by the objective function 
of mRmA keeps on increasing but this gain is very 
small for Q-mRMR. Finally if we draw a vertical 
line passing through a certain value of redundancy, 
we can see that the mRmA is expected to select 
features with greater value of class relevance than 
Q-mRMR. 

This renders Q-mRMR inappropriate for cases 
where some features, irrespective of relevance, 
have very small values of average redundancy 
with the already selected subset. In other words, 
Q-mRMR prefers features with very low 
redundancy over better alternatives i.e. features 
having large value of relevance and a small value 
of redundancy. The same concept is described in 
Figure 4, where relevance is plotted on x-axis, 
redundancy on y-axis and the values taken by the 
objective functions of the two methods along  
z-axis. 

3.3 Applications of Proposed 
Feature Selection Method 

The proposed feature selection method can be 
used in various practical applications including 
microarray, image processing, signal processing, 
speech and geological domains. The data from 
numerous applications exhibit different 
characteristics. For example, microarray data 
contain expression levels of haundreds of 
thousands of genes involved to describe a certain 
phenotype. The goal is to rule out genes having no 
contribution or the ones which are exact or 
approximate copies of other genes. That is where 
feature selection comes in. Using our proposed 
feature selection method, we can easily select the 
most relevant and least redundant genes. 

Another interesting application is image 
processing where selecting important attributes 
from a shape descriptor can be challenging. An 
example is a dataset containing pixel data of 
handwritten digits. Out of thousands of pixels, 
only few hundred are the best descriptor of the 
digit. Using our feature selection method, we can 
eliminate attributes (pixel information) which are 
either weakly related to the target class (i.e. 
handwritten digit) or redundant. 

In Geology, the scientists are usually interested in 
exploring presence of petroleum reservoirs under 
earth’s crust. For that purpose, 2 or 3 dimensional 
arrays of sensors are placed on ground that record 
the reverberation of sound from various objects 
(e.g. rocks, water reservoirs and petroleum 
reservoirs etc.). One can only be interested in the 
subset of sensors’ data relevant to the petroleum 
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reservoirs (the target class in this case) which of 
course can be done through feature selection. 

4. Experiments 

This section describes the experimental settings 
which we used to carry out our comparisons. 
Rankings generated by the Q-mRMR, FCBF and 
the newly proposed mRmA methods are 
investigated and compared. 

4.1 Classifiers 

We tested the performance of the three feature 
selection methods using two classifiers i.e. 
Support Vector Machines (SVM) [5] and Naive 
Bayes [24]. Both these classifiers are widely used 
in the literature [25],[26] due to their simplicity of 
implementation and efficiency [27]. For all 
experiments, we have used the implementation of 
both classifiers given in MATLAB [28] and 
WEKA toolbox [29] 

4.1.1 Support Vector Machines 
(SVM) Classifier 

Support Vector Machines (SVM) [5] is a well-
known classifier used to discriminate between two 
classes. For linearly separable data, linear kernel is 
used and positive and negative examples are 
segregated using a line equidistant from the 
support vectors in each class. For cases where data 
cannot be separated by a single line, a non linear 
kernel (e.g. RBF) can be used [27]. The original 
SVM classifier can classify between two classes 
only but the concept can easily be extended for 
multiple classes [27]. In this work, we use one 
versus all SVM classifier i.e. out of many classes, 
one class is considered as positive and the rest are 
assumed to be negative. 

4.1.2 Naive Bayes (NB) Classifier 

The Naive Bayes classifier is based on Bayes rule 
[27], which calculates posterior conditional 
probability of a class given a sample assuming 
features are conditionally independent. 

4.2. Datasets 

We used six datasets in our experiments; four from 
the microarray, one from image and one from 
physical domain. The summary of the data sets is 
given in Table 2. Datasets contain either 
continuous real numbers or positive integers. For 
the datasets, number of classes range from 2 to 4, 
number of features from 40 to 11,340 and number 
of instances from 62 to 5,000. 

Microarray datasets are CLL-SUB-111 [30], 
Colon [31], Leukemia [32], and TOX-171 [33]. 
CLL-SUB-111 is a microarray dataset to identify 
two genetic subtypes of B-cell chronic 
lymphocytic leukemia (B-CLL). It contains 111 
instances out of which 100 represent either of the 
two types of B-CLL and the remaining 11 samples 
are from healthy controls and hence three classes. 
This is a high dimensional dataset containing 
11,340 features and the data is continuous varying 
from 0 to 1. Colon is another microarray gene 
expression dataset indicating whether a sample 
comes from tumor biopsy or not (2-classes). It has 
2,000 features, 62 instances and the data contains 
multi-valued integer feature values ranging from 1 
to 5. Leukemia is a cancer gene expression dataset 
containing 7,129 features and two classes, either 
AML or ALL. The original dataset is divided in 34 
training and 38 test instances. We join them 
together to construct a data of 72 patients [2]. The 
data is continuous ranging from 0 to 1. TOX-171 
is toxicology dataset which makes use of clinical 
chemistry and expression data from liver of rats 48 
hours after inducing three types of toxicants 
namely alpha-naphthyl-isothiocyanate, 
dimethylnitrosamine and N-methylformamide. 
Three classes represent the mechanism of toxicity 
of each compound and the fourth class represents 
samples from untreated controls. Data is 
continuous with 171 samples and 5,748 features. 

GINA [4] is an agnostic learning hand written 
digit dataset. The task is to distinguish two digits 
odd number from two digits even number i.e. two 
classes. Since only one digit (least significant) is 
enough to tell whether the number is even or odd, 
at least 50% of the data is redundant. This is a 
sparse dataset containing continuous numbers 
between 0 and 1. For our analysis, we converted it 
to binary by setting threshold equal to zero i.e. the 
values equal to zero in original dataset are kept 
zero and all non zero values are converted to 1. 
The operation is the same as it is used to convert a 
gray scale image to black & white [23]. The 
dataset contains 970 features and 3,153 instances. 
Waveform [34] dataset contains large number of 
instances each being a combination of two of the 
three base waves with noise  (mean=0 and 
variance=1) added. Dataset has 40 attributes and 
the output is one of three possible resultant waves. 
Data contains integers ranging from 1 to 5. 

4.3. Performance Evaluation 

We evaluated the performance of three feature 
selection methods on the basis of 10 fold cross 
validation accuracy on nested subsets of top 20 
features of each dataset. In order to find the 10 
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fold cross validation accuracy, the data was 
randomly divided in 10 equal portions, nine were 
used for training the classifier and then it was 
tested on the left out portion;  the process was 
repeated ten times giving each portion a chance to 
become testing data. Finally, the average gives 10 
foldcross validation accuracy with given number 
of features. The experiment was repeated 20 times 
for each dataset and for each classifier. 

5. Results 

In this section, we present the results obtained 
when FCBF, Q-mRMR and mRmA were tested on 
six datasets using SVM and Naive Bayes 
classifiers. For the FCBF filter, we used its 
implementation given in FEAST toolbox [19]. The 
subset generated by the method may not contain 
20 features for all datasets; to combat this issue we 
concatenated the selected and rejected subsets and 
picked top 20 features from the combined set. 

5.1 CLL-SUB-111 Dataset 

CLL-SUB-111 is the highest dimensional dataset 
used in our experiments. Figure 5(a) shows that 
for CLL-SUB-111 dataset, our proposed feature 
selection method is throughout better than Q-
mRMR and FCBF using SVM classifier. It can 
also be seen in the first entry of Table 3 that 
mRmA has achieved the highest accuracy for 15 
nested subsets of features, which is much greater 
than the other two competitors. mRmA 
demonstrates its superiority even for naive Bayes 
classifier too. As shown in Figure 5(b) it produces 
far better accuracy than the other two methods, 
FCBF is the second best and Q-mRMR is the 
poorest. Moreover, as shown in the first entry of 
Table 4 mRmA produces the highest accuracy for 
18 nested subsets of features on this dataset with 
naive Bayes. 

5.2 Colon Dataset 

Colon is another microarray gene expression 
dataset for which our proposed method 
outperforms FCBF and Q-mRMR. Using SVM 
classifier (refer to Figure 6(a)) mRmA is the best 
for small number of features but later on all three 
methods saturate to a constant value of accuracy. 
As shown in Table 3, mRmA is on top for 16 
nested subsets of features. Using naive Bayes 
classifier (Figure 6(b)) mRmA is better than Q-
mRMR initially and then they all saturate with Q-
mRMR a bit better than the other two methods. 
Table 4 reveals that Q-mRMR and mRmA achieve 
the best accuracy for equal number of nested 
subsets of features. 

5.3 Leukemia Dataset 

As shown in Figure 7(a), mRmA reaches to the 
highest accuracy with minimum number of 
features and is close to FCBF. mRmA is, however, 
far better than Q-mRMR for the dataset. Table 3 
indicates that our proposed method mRmA is able 
to generate highest accuracy for all 19 nested 
subsets of increasing features. Using naive Bayes 
classifier, mRmA is just better than FCBF and is 
significantly superior to Q-mRMR (refer to Figure 
7(b)). Table 4 shows that out of 19 nested feature 
subsets, mRmA produces highest accuracy for 17 
times. 

5.4 TOX-171 Dataset 

Figure 8(a) indicates that for the TOX-171 dataset, 
FCBF and Q-mRMR produce almost similar 
accuracy for all nested subsets. However, mRmA 
is throughout better than the other two. Further, 
mRmA produces highest accuracy (refer to Table 
3) for 14 nested subsets while FCBF is the best 
only 4 times and Q-mRMR is only twice. FCBF is 
the best method for the dataset using naive Bayes 
classifier, mRmA is slightly inferior while Q-
mRmR is the poorest of all (refer to Figure 8(b)). 
Table 4 shows that FCBF produces the highest 
accuracy for 16 nested subsets whereas our 
proposed mRmA is the best for 5 times but is 14 
times better than Q-mRMR. 

5.5 GINA Dataset 

Using SVM classifier and thresholded GINA 
dataset, mRmA outperformed Q-mRMR (Figure 
9(a)) while being very close to FCBF. For small 
subsets of nested features, the superiority of 
mRmA over Q-mRMR is more significant than 
with larger subsets. For 17 out of 19 nested subsets 
of features, mRmA produces the highest accuracy 
(Table 3). Using naive Bayes classifier, FCBF 
performs the best by remaining very close to 
mRmA. They both, however, are better than Q-
mRMR initially but all three methods saturate to 
maximum accuracy as the size of nested features 
subset increases beyond 8. As it is mentioned in 
Table 4, both FCBF and mRmA generate the 
highest accuracy 11 times in 19 trials. 

5.6 Waveform Dataset 

For the waveform dataset, both FCBF and mRmA 
are better than Q-mRMR for small nested subsets 
of features and saturate to a higher accuracy than 
obtained by Q-mRMR (refer to Figure 10(a)). 
Table 3 indicate that mRmA and FCBF are 
comparable for this dataset generating highest 
accuracy for 16 and 12 times respectively. For 
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naive Bayes classifier, all three methods are 
comparable in the beginning (refer to Figure 
10(b)) but mRmA settles to a slightly larger value 
of accuracy than the other two methods. The 
second last entry of Table 4 establishes the 
superiority of our proposed mRmA method as it 
generates highest accuracy for 17 nested subsets of 
features which is much greater than obtained 
through Q-mRMR and FCBF. 

5.7 Overall Performance 

For all datasets using both SVM and naive Bayes 
classifiers, our proposed mRmA achieved the best 
overall performance for increasing number of 
nested feature subsets. The final entry of Table 3 
shows that for all six datasets, mRmA method 
achieved the highest accuracy 85% of the times 
whereas for FCBF this is only 19% and is the least 
for Q-mRMR i.e. only around 8%. Similarly, the 
last row of Table 4 indicates that mRmA attains 
the highest accuracy in around 70% of the cases, 
the runner up is once again FCBF (around 33%) 
and Q-mRMR is the best method for only 19% of 
the nested feature subsets. However, our proposed 
algorithm is equally accurate or inferior to Q-
mRMR for datasets where there is “no small 
relevance and very small redundancy issue” 
mentioned in detail in Section 3. 

6. Conclusion 

In this paper, we have shown that irrespective of 
relevance the objective function of Quotient based 
maximum relevance minimum redundancy (Q-
mRMR) [1] filter produces surprisingly large 
values for very small values of redundancy. Such 
large values favor those features which have low 
redundancy with the selected features but are less 
relevant for the class. 

Due to this shortcoming, Q-mRMR can select 
features which are highly irrelevant to the class. 
To address this issue, we propose a new algorithm 
named maximum relevance maximum anti-
redundancy (mRmA). It replaces the redundancy 
term in the Q-mRMR with anti-redundancy and 
the division operation with multiplication. 
Experiments were conducted on six real world 
datasets from various domains using features 
generated by the three methods i.e. FCBF, Q-
mRMR and mRmA with 10 fold cross validation. 
Results confirm that mRmA performs better than 
both FCBF and Q-mRMR for SVM and Naive 
Bayes classifiers. This shows that replacing 
redundancy by anti-redundancy term in Q-mRMR 
improves its accuracy on a variety of datasets from 
various application domains including physical, 
image and microarray. 
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Table 1: A synthetic dataset and feature ranking obtained through Q-mRMR and mRmA 

X Y Z Class 
Class Relevance 

Redundancy with 
Feature Y 

Feature Ranking 

X Y Z X Z 
Q-

mRMR 
mRm

A 
0.1 0.4 0.4 1 

0.72  0.84  0.19 0.3728  0.0925 y, z, x  y, x, z 

0.6 0.5 0.9 1 
0.8 0.6 0.5 1 
0.9 0.0 1.0 0 
0.9 0.2 0.0 0 
1.0 0.3 0.4 0 

Table 2: Summary of datasets 

No. Dataset Application Features Instances Classes Type of Data 
1 CLL-SUB-111 Microarray 11,340 111 3 Continuous 
2 Colon Microarray 2,000 62 2 Integer 
3 Leukemia Microarray 7,129 72 2 Continuous 
4 TOX-171 Microarray 5,748 171 4 Continuous 
5 GINA Image 970 3,153 2 Continuous 
6 Waveform Physical 40 5,000 3 Integer 

Table 3. The best accuracy count of each feature selection method using SVM classifier 

Dataset Winner Count 
FCBF Q_mRMR mRmA 

CLL-SUB-111 0 4 15 
Colon  3 2 16 
Leukemia  3 0 17 
TOX-171  0 1 19 
GINA  4 2 14 
Waveform  12 0 16 
Winning Percentage 19.29% 7.89% 85.08% 

Table 4: The best accuracy count of each feature selection method using naïve Bayes classifier 

Dataset 
Winner Count 

FCBF Q_mRMR mRmA 
CLL-SUB-111 1 0 18 

Colon  2 11 11 
Leukemia  11 6 11 
TOX-171  5 3 17 

GINA  16 2 5 
Waveform  3 1 17 

Winning Percentage 33.33 20.17 69.29 
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Figure 3: Objective function of Q

line/curve represents a different value of relevance
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Figure 2: Values of objective function taken by Q
of relevance and redundancy represented as grayscales
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function of Q-mRMR and mRmA plotted verses redundancy. Each 
represents a different value of relevance 

 

 

 The features of the dataset given in Table 1 and their 
class discrimination capability 

Values of objective function taken by Q-mRMR and mRmA for various values 
of relevance and redundancy represented as grayscales 

 

 

mRMR and mRmA plotted verses redundancy. Each 

The features of the dataset given in Table 1 and their 

mRMR and mRmA for various values 
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Figure 4: Values of objective function taken by Q
relevance and redundancy shown as 3D plot.

                       Figure 5: 10 fold cross validation accuracy of CLL
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Values of objective function taken by Q-mRMR and mRmA for various values of 
relevance and redundancy shown as 3D plot. 

 

(a) SVM 

 

(b) Naïve Bayes 

10 fold cross validation accuracy of CLL-SUB-111 dataset.

Redundancy (mRmA) Feature Selection 

mRMR and mRmA for various values of 

111 dataset. 
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(a) SVM 

 

b) Naïve Bayes 

                              Figure 6: 10 fold cross validation accuracy of Colon dataset. 

 

(a) SVM 

 

(b) Naïve Bayes 

Figure 7: 10 fold cross validation accuracy of Leukemia dataset 
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(a) SVM 

 

(b) Naïve Bayes 

                             Figure 8: 10 fold cross validation accuracy of TOX-171 dataset. 

 

(a) SVM 

 

(b) Naïve Bayes 

                               Figure 9: 10 fold cross validation accuracy of GINA dataset 



Pak. J. Engg. & Appl. Sci. Vol 21 July, 2017 

14 

 

 

 

 

 

 

 

 

 

 

 

(a) SVM 

 

(b) Naïve Bayes 

                           Figure 10: 10 fold cross validation accuracy of Waveform dataset 


