
Pak. J. Engg. & Appl. Sci. Vol.7, Jul, 2010 (p. 47-54)

47

1. Introduction

Modeling and Simulation (M&S) is widely used to

understand the issues in designing physical systems. These

systems vary from mathematical modeling to war

gamesimulators. Different mathematical models are used for

training by Department of Defense (DoD). These models are

often implemented using parallel and distributed approach to

avail the benefit of parallelism. Parallel and discrete event

simulation is often characterized as distributed simulation.

The field of PDES becomes more interesting with latest

technology advancements, particularly with the availability

of multi-core systems. PDES is categorized into two types,

conservative and optimistic simulation. Conservative

simulation requires all federate to process only safe events,

whereas optimistic simulation allows events processing

without taking care of time stamp, at the same time it

provides a rollback mechanism [1] this approach is termed

as Local Causility Constraints (LCC). High Level

Architecture (HLA) exploit the approach of parallel and

distributed simulation, PDES become the central theme for

HLA. HLA was designed for interoperability that allows

programmers to use build in models. DoD uses HLA for as a

central framework for training. Currently most countries

deploy High Level Architecture to analyze war techniques,

air-to-surface missiles systems [2] before physically

launching. The High Level Architecture is an IEEE

standard framework for distributed simulation composed of

different interacting simulation components [2, 3]. HLA

supports reusability and interoperability. HLA is a complete

generic framework, in spite of its lacks the features required

for real time operations.

Human-in-a-loop is an adaptive simulation where user

is directly interacting with the system. HLA and other

simulation protocols are specially designed for war games

like simulations [4]. War simulations are more adaptive, as

it requires command and control system to efficiently

managed war scenarios. Most of the government

organizations allotted huge budget to train their army using

distributed simulators. This is to analyze and increase their

skills of decision making[5]. With the innovation of cluster

and grid computing, the trend of parallel and distributed

simulation becomes much more interesting and innovative;

resources are distributed across network. In mid 1990’s

HLA is a part of many large scale distributed war gaming

simulations. Most of the war simulations follow

conservative approach as optimistic approach violates local

causality constraint. In this paper we present HLA based

man-in-a-loop simulation for network centric war games. In

this paper, we propose a framework for addressing the real

time issues in the development of man in loop simulation.

We proposed a generic framework that acts as a Real time

simulation generation engine (RTSGE), provides interfacing

An HLA Based Real Time Simulation Engine for Man-in-Loop Net

Centric System

Asad Waqar Malik, Shoab A Khan S. Rauf ul Hassan

asad_maalik@yahoo.com; shoab@carepvtltd.com; rauf.hassan@gmail.com

College of Electrical and Mechanical Engineering (CEME)

National University Of Science and Technology (NUST)

PAKISTAN

Abstract
This paper presents a novel HLA based framework, designed to provide interfacing with real time man-in-loop

simulation. There is no such framework exists that incorporates real time interaction from external devices. This

framework acts as container for federates and responsible for federate management by creating new federates at run

time based on real time data input. It is designed and implemented using a modular approach to minimize the delay

generated due to run time federate management. In this paper we discuss the issues in implementing real time

framework, particularly the time advancement strategy in distributed simulations. This novel framework can be used

as a gaming engine for distributed simulations.

It is suitable for simulation war fields, missile systems. In our extensive research we haven’t come across any

simulation engine that provides interface with man-in-a-loop simulations. Although there are some HLA based

framework exists that used to simulate battle fields, missile systems, etc. but our proposed simulation engine deals

with man-in-a-loop simulation. Its unique architecture, features e.g. real time federate management, time

advancement strategy and real time interfacing with simulation engine and individual federates are the unique

characteristics of Real Time Simulation Generator Engine (RTSGE) . Experimental section demonstrates the

effectiveness of proposed simulation engine for diverse type of scenarios including man-in-a-loop simulations.

Key Words: HLA, RTI, man-in-loop, simulation, framework, air defense system

mailto:asad_maalik@yahoo.com
mailto:shoab@carepvtltd.com
mailto:rauf.hassan@gmail.com

Pak. J. Engg. & Appl. Sci. Vol. 7, Jul., 2010

 48

to real time applications, these applications could be video

or data streaming. RTSGE provides simple API calls to

connect with external data sources/ applications. RTSGE is

responsible for federate management including creating and

destroying federate.

In section II we analyze the similar frameworks

available, and comparison is drawn with RTSGE, section III

introduced the issues in implementing RTSGE; section IV

and V shows the implementation details and experimental

results and finally the conclusion and future work is

presented in section VI.

2. Related Work

HLA become the widely accepted standard for war

training, most of the countries uses HLA to simulate its

weapon and radar systems. Distributed Object-Oriented war

gaming (DOWs) is one of the similar approach used by

Korea to test their missile system before physically

launching [5]. Recent research shows some significant

advancement in HLA and its interfacing with different

network simulation tools [6] [7]. Network air defense

simulation training system (NADSTS) is a training

simulator based on HLA; it uses different plug-in tools like

sniffer pro, trace route to provide an extensive training

program [8]. NADSTS uses layering approach, divides all

the functionality in the three layer architecture. Different

countries/organizations working on modeling and

simulation, Korean government uses Real time distributed

simulation environment (RDSE) to simulate medium range

surface-to-air missile system (Chelmae-II). RDSE is used as

a performance analysis tool for Chelmae-II system. RDSE is

HLA based uses RTI as lower level communication layer

[9]. A Raytheon is a USA based company working on HLA

based testing and evaluation framework, that allow input

from real flight simulators [9]. Another similar work for

network war defense was presented in [8], it used HLA as a

base line of communication mechanism. Our approach is

having some features common with NADSTS and RDSE.

RTSGE is an outcome of research based project on training

and evaluation having unique architecture, supports real

time interaction for man-in-a-loop simulation and time

advancement features are the key components. RTSGE is

most suitable for defense simulations, and training purpose,

the most promising usage of RTSGE is, with TEWA

systems [10]. TEWA stands for threat evaluation and

weapon assignment system, used by most countries in order

to better optimize their resources. RTSGE with its external

interface, it can easily incorporate with running TEWA

systems.

3. HLA Compliant Framework for Real
Time Simulation Generator: Issues
and Challenges

HLA is designed to incorporate different simulation

models transparently, without any developer efforts. It is

used to provide interoperability among existing simulations.

Designing real time HLA based man-in-a-loop simulation

framework required effective management of issues and

challenges. Challenges in incorporating real time data with

simulated environments in HLA includes:

 Time management

 Real time federate generation (RTFG)

 Latency (delay)

These capabilities must be handled automatically and

transparently. In HLA environment RTI is responsible for

time advancement based on tick (). This is a conservative

approach of distributed simulation, in which ticks are not

granted until all federates requested for tick (). Simulation

models where data disseminate in a hierarchical fashion,

from one federate to another required effective time

management strategy. In traditional RTI, events are

transmitted based on tick (); incorporating man-in-a-loop

simulation requires delivery of real time data in one tick ()

instead of multiple ticks, as this mechanism adds additional

delay. We designed and implemented Real Time

Management Module (RTMM) to handles time management

issues.

Real time federate generation is a complicated task, as

it is responsible for generating federate at run time based on

real time data input. The overhead in generating federate

must be minimized. Real time data is incorporating through

external interfacing with a delay of nano-seconds. This

delay affects the performance of simulation model. Latency

is a third important factor in handling real time data, adding

multiple layers generate additional overhead. To handle

these different modules RTMM, RTFG are incorporated in a

single layer.

Figure 1 shows the layering approach used to

developed Real Time Simulation Generator Engine

(RTSGE). Different layers are communicating with central

RTI. Initially only the Module generator is an active

federate, it is responsible for dynamic generation of

federates based on information from external source.

Module generator provided an interface to other applications

for communication through Real Time Object Exchange

proxy (RTOE). This interface provided simple API calls to

send and receive data from simulation engine. The next

important functionality of Module generator is tracking of

existing federates, it maintained a list of federates currently

active. This list is build using discover object function call

provided by RTI. Module Generator is acting as a federate.

The main idea of making it as a federate is to efficiently re-

route the data to the desired end federate through central

RTI.

An HLA Based Real Time Simulation Engine for Man-in-Loop Net Centric System

 49

4. Real Time Simulation Generator Engine (RTSGE)

Fig.1 Shows Real Time Simulation Engine framework

Fig. 2 Complete scenario showing communication model of RTSGE

Pak. J. Engg. & Appl. Sci. Vol. 7, Jul., 2010

 50

Timer is an important module in distributed

simulation, successful completion of simulation is entirely

based on timer. Different approaches are used to efficiently

handle timer, i.e. conservative, optimistic and hybrid

approach [4] [11]. Lower Bound Timestamp (LBTS) is the

minimum time among all federates; different approaches

used to calculate LBTS, or Global virtual time (GVT) [12].

In this novel framework the major issue is time

synchronization, as there are some federates running

simulation time whereas other federates are sending real

time data from some external source. Theoretical analysis

shows that there two different approaches can be adopted for

time synchronization. First is that a dedicated federate

running a simulation time can generate tick messages

whereas RTI should waits for the real-time federate

response. Secondly a dedicated real-time federate is use for

time management. The next major issue was to establish a

relationship between simulation and real-time clocks. In this

framework we incorporated a second approach where a

dedicated real-time running federates are responsible for

time increment. To cater the difference between time

generated by real-time federate and simulated time, we

incorporated a self scheduler module called Real Time

Management (RTM).

Real Time Management (RTM) is an important

concept we introduced in a RTSGE. Time need to be

advanced for simulation to progress, having integration of

real world with simulated environments leads a time

advancement and synchronization problems. RTM module

is responsible for handling time advancement and

synchronization issues. In HLA-RTI based simulations all

active federates need to request for time advancement, after

that RTI grant the smallest requested time; having some

federate waiting for the data from external source without

issuing a time advancement request might lead to a deadlock

situation. In particularly to handle this problem, federates

are arranged in a hierarchy, based on their publication and

subscription policies. Thus it forms different level in a

hierarchy table; RTM generate the time advancement tick

based on number of levels in a hierarchy. This will enforce

delivery of real time object to the destination federate in one

simulated time tick. During implementation phase we

observed that if every federate including Module Generator

issue tick (1) and messages are flow from one federate to

another in a hierarchy than after first couple of packets, new

packets starts overriding the previous packets before

reaching the destination. This can lead to erroneous

simulation results. In order to handle this problem, tick

Connect RTSGE to RTI

Publish all attributes

Subscribe all attributes

Start RTSGE

While (simulation not end)

If (receive object from external link)

 Check destination federate exists

 If (! exists)

 Create thread

 Pass federate address space to start its normal execution

 Update active federate list

 End if

 If (federate exists)

 Call update attribute value for forwarding received data

 End if

 Request for time tick based on number of levels

End if

End while

Destroy RTSGE

Fig. 3 Pseudo code of RTSGE framework

An HLA Based Real Time Simulation Engine for Man-in-Loop Net Centric System

 51

generated by RTM is based on number of levels in a

hierarchy. This allows real time data to reach the destination

federate within a single Module Generator tick. Real Time

Simulation Engine is useful for developing war games,

where large number of real objects like radar, jet etc

interacts with each other. RTSGE allows interfacing

between different RTSGE through real time object exchange

server or through RTI.

When RTSGE receives object data from external

source it first check that the federate exist, this is done by

maintain a list of active federates. If the federate does not

exist, it create a thread federate which act as an independent

federate. RTSGE provides a container interface to its created

federates. Each generated federate also have a RTOE proxy,

which is used to communicate with external applications as

shown in Fig. 2. RTSGE is independent of application layer,

Fig. 4 Architectural view of distributed RTSGE

Pak. J. Engg. & Appl. Sci. Vol. 7, Jul., 2010

 52

its independent of application model used. Using RTOE

proxy server different GUI’s can be incorporated in to the

existing system.

Fig.4 demonstrate the complete working scenario,

where RTSGE generates different federate threads that act

as separate independent objects, communication with HLA-

RTI. Each federate thread has an external interface for

communication with other distributed applications. These

distributed applications could be geographical display or

some processing model taking input, processing and

analyzing information. Scenario compiler is a special

module used to record all the simulated data with respect to

federates and local time. Replay generator used this

scenario compiler to produce the same results; it provides

replay option for analysis purpose. Track generator is a

special module used to generate tracks of any moving

object. It generates using mathematical model or it can

also acquire from other streaming applications. All these

modules are carefully designed and implemented keeping

space for future enhancements.

5. Implementation

Fig. 5 shows the GUI used to simulate the track of

fighter jets and radar system, map based GUI was developed

using Map Window API’s. GUI allow user to develop

scenarios which is simulated by RTSGE, RTOE proxy

servers are used to send updated information to GUI.

Series of experiments were performed to measure the

delay introduced by Real Time Simulation Engine (RTSGE)

by performing its federate creation and management

functions. The experimental configuration uses Intel Core 2

Quad CPU Q8200 @ 2.33 GHz with 2 GB of RAM. The

systems are connected together using Gigabit Ethernet; for

centralize communication we used Portico RTI.

To demonstrate the effectiveness of our RTSGE, we

developed a toy application of war game, which consist of

radars, fighter jets and air defense missile system. Fighter jet

is responsible for generating tracks i.e. its real time

coordinates along longitude, altitude and latitude. Radar

system is responsible of detecting the motion of fighter jet

Fig. 5 Shows GUI interface for simulator

An HLA Based Real Time Simulation Engine for Man-in-Loop Net Centric System

 53

under its area of surveillance. We are interested in

measuring the delay incur by RTSGE for federate creation,

management and in routing real time data through its

external interface.

In this experimental setup a Fighter Jet federate sends

its location to the RADAR federate. Data is send through

real time external interface which is detected by RTSGE and

route the data to the destination federate. Destination

federate remove the header and calculate the delay. The

difference between the source and destination wall clock

time is the delay incur by RTSGE. Delay can be given by:

Time delay = Processing delay + Transmission delay +

Propagation delay.

Transmission delay is calculated as packet Length

(bits) divided by link band width (bps). Since we are using

Gigabit Ethernet with only 56 bytes of payload/ update, so

transmission delay is close to zero, which is negligible. In

order to measure the delay between distributed nodes, time

synchronization is required, we used network time protocol

(NTP); it measures the drift between times. Drift is measure

before any transmitted update. The detailed results after

correction are shown in Fig. 6 X-axis represents the wall

clock time and y-axis represents number of reading;

different tracks have been drawn on GUI for RTSGE

testing, results are shown in Fig. 5. It was observed that

delay between the systems is 18 ms on the average. It was

also observed that delay varies between 0 ms and 32 milli

sec. Experiment were repeated number of times to verify the

results. The experiment was performed with multiple fighter

jets and a radar system. It was observed that delay varies

between 0 ms and 78 ms with average value of 15 milli sec.

Different factors involved in this variation like scheduler,

priority and preemption mechanism used by different

operating systems. This investigation is in its initial stage,

more detail analysis will be presented in a extended version.

Fig. 6 Results of various tests, x-axis represents the wall clock time (minutes/secs) and y-axis shows the no.

of observations

Pak. J. Engg. & Appl. Sci. Vol. 7, Jul., 2010

 54

6. Conclusions

Time synchronization between real time and

simulation time clock is difficult and it varies from

application to application. In this paper we presented a

complete framework for real time applications. This

framework provides interface to real world systems. The

interfacing is simple enough to incorporate in any existing

system. Generating federate on-the-fly is another effective

way to analyze the real word simulations. The experimental

section demonstrates the effectiveness of our approach and

measured the time taken by RTSGE to create and activate

the federate is convenient. This is the preliminary work

shows some satisfying results; in-depth analysis is required

to conclude some remarkable achievement in integration of

real time simulation engine. This is ongoing project and

more detail analysis of each and every layer of RTSGE will

be added in a journal paper. In future we are particularly

interested in providing interface to other HLA compliant

RTI’s that could be helpful for large scale simulations.

Acknowledgement

This work is sponsored by National University of

Science and Technology, through its research grant fund.

References

[1] R. M. Fujimoto, "Parallel discrete event simulation,"

Communications of the ACM archive, vol. 33, pp. 30-

52, 1990.

[2] "Defense Modeling and simulation, High Level

Architecture, RTI 1.3-Next Generation programmer's

guide" vol. version 3.2, 2000.

[3] "IEEE standard for modeling and simulation M&S

High level architecture (HLA) Framework and rules

IEEE 1516-2000 " pp. 1-22, Sep.

[4] P. T. Bui, S.-D. Lang, and D. A. Workman, "A New

Conservative Synchronization Protocol for Dynamic

Wargame Simulation."

[5] J. H. Lim;, T. D. Lee;, and C. S. Jeong;, Distributed

Object Oriented Wargame Simulation on Access Grid

vol. 3516: Springer, 2005.

[6] S. Pawletta, W. Drewelow, and T. Pawletta, "HLA-

based simulation within an interactive engineering

environment," in Distributed Simulation & Real-Time

Applications, 2000. (DS-RT 2000). Proceedings, 4th

IEEE International Workshop on, 2000, pp. 97-102

[7] A. W. Malik, A. Basit, and S. A. Khan, "HLA

compliant network enabled distributed modeling and

simulation infrastructure design," in Proceedings of the

4th WSEAS International Conference on Software

Engineering, Parallel \& Distributed Systems

Salzburg, Austria: World Scientific and Engineering

Academy and Society (WSEAS), 2005.

[8] C. Gang, X. Shang, J. GuanQun, and J. YiLong,

"Network Attack-Defense Simulation Training System

Based on HLA," in Computer Modeling and

Simulation, 2009. ICCMS '09. International

Conference on, 2009, pp. 303-306.

 [9] B. Cho;, D. Y. Kin;, S. H. Kim;, and C. Youn;, "Real

Time distributed Simulation Environment for Air

Defense system using a Software Framework," Journal

of Defense Modeling and Simulation: Applications,

Methodology, Technology, vol. 4, pp. 202-217, 2007.

[10] H. Naeem;, A. Masood', M. Hussain;, and S. A. Khan;,

"A Novel Two-Staged Decision Support based Threat

Evaluation and Weapon Assignment Algorithm, Asset-

based Dynamic Weapon Scheduling using Artificial

Intelligence Techniques," CoRR, vol. abs/0907.0067,

2009.

[11] A. Park; and R. Fujimoto;, "Optimistic Parallel

Simulation over Public Resource-Computing

Infrastructures and Desktop Grids," in 12th IEEE

International Symposium on Distributed Simulation

and Real Time Applications, Vancouver, BC, Canada.,

2008.

[12] D. R. Jefferson, "Virtual Time," ACM Transactions on

Programming Languages and Systems, Vol. 7, pp. 404-

425, 1985.

