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Abstract

The steady state heat distribution in a plane region is modeled by two dimensional Laplace
equation. In this paper Galerkin technique has been used to construct Finite Element model for two
dimensional steady heat flow problem with Dirichlet boundary conditions in a rectangular domain.
Results are then compared with analytic solution to check the accuracy of the developed scheme.
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1. Introduction

It is conventional to solve Laplace Equation [1]
in two dimension with Dirichlet conditions. In many
advanced courses on electromagnetism , it s
fundamental to study the solution of Laplace equation
with various boundary conditions. Particularly, the
Dirichlet and Neumann boundary value problems of
Laplace equation are included in advanced courses
[2]. Two dimensional Laplace equation with Dirichlet
boundary conditions is a model equation for steady
state distribution of heat in a plane region [3]. In this
paper Galerkin technique has been used to develop
Finite Element model for two dimensional Laplace
equation with Dirichlet boundary conditions in a
rectangular domain.

2. Finite Element Model

A simple case of steady state heat conduction in
a rectangular domain is defined by two dimensional
Laplace equation

2 2
ZX—;’<x,y)+Zy—;‘(x,y):0in R )
with Dirichlet conditions

u(x,c) = fr(x),u(x,d) = fo(x),a<x<b } ?
u(@ y)=91(y),u(,y)=gz(y).c<y=<d

97

2.1 Domain Discretization

Divide the region R into finite number of
rectangular elements. Every node and every side of
the rectangle must be common with adjacent
elements except for sides on the boundaries. The
nodes and elements are both numbered.

2.2 Interpolating Functions

Consider a rectangular element (e) with sides
‘a’ and ‘b’ as shown in figure 1 in which the nodes
are numbered in the counterclockwise direction and
derive the interpolation function [4] for it. Assume
the interpolating polynomial in such a way that the
number of terms and the number of nodes are equal
in the element. Accordingly, assume

u® (x, y) =Cq +CpX +Cgy +Cyq Xy (3)

where ¢;.i=1,2,3,4are constants.
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Fig.1 Rectangular element with nodes
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We choose local coordinate system (X,y) to
derive the interpolation functions.

The value u(x,y) at each node of rectangular
element is given by

u; =u®(0,0)=¢; (4a)
u, =u®(a,0)=c¢; +cya

u, =u®(a,0)=¢; +cya (4b)
ug=u®(a,b)=c; +cra+cgb+cqab  (4c)
ug =u®(a,b)=c; +csb (4d)

Solving equations (4) for ¢;.i=1234, we
obtain

CL=U
Us —u
cp =2
Ug —Ug
C3 :T
Uz —uUyg +Ug —Up
Cq =

ab

Substituting the values of ¢;.i=12,3,4 in
equation (3)

u®(x,y)=uy +(u2 _ul)x+[u4 _ul)y
a b

Uz —Uyg +Ug —U
+( 3 4 1 ZJXy

ab
Collecting the coefficients of u,,u,,u, and u,
in the above equation, we have

(e) (XY X Y
ut’(x,y) [ aj[ 5 u1+a o Us
Xy Xy
A 1-212
+(abjlj3 +( ajb Uy

4
i=1

where
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2o

N© X [1_1j
a b
NG =2
ab

NG - (1_§jz
a/b

2.3 Element Equations

The Galerkin [5] approach is applied to
construct Finite Element model of the equation (1)

over the element (e) . Substituting u‘® (x, y) into the
equation (1) gives the residual
oy
Then equating the weighted residual integral to
Zero gives

2. (e)
(i

where W X,y is the general weighting function.

o2u®
8y2

jdxdy: 0 (6)

g w2 ey g w a;(e) dxdy=0  (7)

ax2 2
Since
(e) (e) 2, (e)
i W ou _ aﬂ ou W o°u
OX OX oX  OX ox2
Therefore
W 82u(e) —i W 6U(e) ~ % au(e)
ox2  ox X oX  ox
Similarly
62u(e) _i 8U(e) ~ 5& au(e)
oy oy oy oy oy

Substituting in equation (7)
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Using gradient theorem [4]to 1% and 2™ integrals in
equation (8) to transform into line integrals

”[aw u® aw ou®

X ox oy ]dXdyzo
8)

where 8R® is the border of the element(e), s is
the curvilinear coordinate on the boundary and
n, =cos(A, j) and n,=cos(fi,]) are direction
cosines of the outward unit normal of the boundary.

Substituting in equation (8)

(e) (e)
{W ou ny ds + o
3

(e) (e)
J'J' oW ou 8W ou dxdy=0
X oX oy
(e)
ojW o ds
on

(e) (e)
I[yau L W au dedy_

v OX OX ay oy
R
j j Widxdy =0 )
R®
where
= n, + ny
on OX oy

and n is the unit outward normal.

For Dirichlet boundary conditions, u(x,y) is
specified on the boundary, and the line integral

au (e)
on

W
oR®

ds

is neglected. So equation (9) becomes

H oW au(e)+aw au® 0
oX OX oy oy

(10)

The evaluation of equation (10) requires the

function u® (x,y) and its both partial derivatives.
Differentiating equation (5) gives

(e)
G e
OX ab a a ab

+ (a_yb)u3 _( a_ybjuA' (112)
ook )
oy \ab b)* \ ab)?
+ (%jug +(%— a—yb)u4 (11b)

Substituting equation (11) into equation (10)

JI[C

HMKL_EJU {1_1]”2
o ox |[\lab a a ab
R e

ab
oW 1 X X
1% K___] BT
ab b ab ab
R
1 x
—_— dxd 12
+(b ab)ull} xay (12)
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In Galerkin weighted residual approach, the
weighting factors are chosen to be shape functions
ie.

W, =N® i=1,234

Let‘s evaluate equation (12) for

W =N® (x v=(1-X (1Y
W; (X, y)=N; (x,y)—[l aj(l bj (13)

Differentiating equation (13) with respect to x
andy

%z(l_lj (14a)
OX ab a
%{L_lj (14b)
oy \ab b

[

X 1 x
— ——— dxd
abu3+(b abju“} &

:Eu—iu —iu +—u
3a1 3a2 6a3 3a4
P 2, -2y - 2y, =0

3B 6b % 6b° 3 *

b a a bj
=S| —+— U +| —+— |u,

3a 3 6b 3a

b aj b aj
+|——+— |Ug+| ———|Uy =0
(Ba 6b 6a 3b
— L 22+, +—(a% - 20%)u,

6ab

6ab

b
6ab
Similarly for

(@2 +b2)u, +ﬁ(b2 _2a%)u, =0 (16a)
a

1 2 2 1 2 2
—(a“ -2b“)u; +——2(a“ +b“)u
6ab( )1+6ab (@ +b%)u,

1 - 2 1 5
+— (b -2a“)u; ———(a“ +b“)u, =0 (16b
6ab( U3 6ab( Mg (16b)

1

=" (@% +b?)uy, +$(b2 -2a%)u,

1 2 W2 1 - 2
+—2(a“ +b%)u, +—(a“ —2b“)u, =0(16¢c
6ah ( Uz 6ab( )uy = 0(16¢)

1

=" (b —2a%)u, —é(a2 +b?)u,

1 2 2 1 2 2
—(a“-2b —2(a“ +b =0(16d
+6ab( )u3+6ab (@ +b%)uy (16d)

The above equations (16a) to (16d) can be
written in matrix form

|<(e) _u{(e) } H©

where

2a’+b%) a?-20% -(a’+b%) b%-2a?
I<(e)_=i a’-2b% 2(a®+b?) b2-2a% —(a%+b?)
- 6ab| (a’+b%) b%-2a’ 2(’+b%) a’-2p°
h2-2a2 —(a?+b?) a’-2b® 2(a’+b?)
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Up

u{(e)} :jz and R® =
3

O O O o

Uy
Observe that I((e) _is symmetrical i.e.
o -k

2.3.1 Assembly of Element Equations

There are four equations for every element.
Since some or all nodes of element (e) are shared
with other elements, the u-value for a shared node
appears in the equations of all elements that shared
the nodes. Combining all the element equations we
will get a global system coefficient matrix. This
matrix has rows and columns as there are number of
nodes. We will assemble the system matrix in the
following way.

Suppose there are ‘n’ nodes in the system. Label
the nodes in order from 1 to n. Associate the number
of each node with row and column of every element
matrix where the u-value for that node appears on the
diagonal. In system matrix [6], the node numbers are
assigned to rows and columns in a manner like one
described above.

We get the entry in row i and column j of the

system matrix by adding the values from row ¢ of
every element matrix that has row i, then adding
these in the columns where the column node number
match. After the assembly of local systems, the
global system of equations is of the form

[KIU}={F}

2.4 Adjusting for Dirichlet Conditions

The u-values are specified for all the nodes on
the boundary. We substitute the known values in
every equation where it appears and shift them on
right hand side of the corresponding equation i.e. for
a particular node n, all the values in column ‘n’ of the
matrix are multiplied by the known value and
subtract the result from right hand side of the
corresponding row. The equations corresponding to
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the known nodes are removed from the system. Now
our system has only equations involving unknown
nodal values. This completes the adjustment of
boundary conditions for the system equations and
now the system is ready to solve.

2.5 Solution of Global System

Solve the system of equations for unknown u-
values using an iterative method. These values are
approximate solutions at the nodes. If the
approximations to u(x,y) at intermediate points in
the region are needed, we obtain them by using linear
interpolating relations.

3. Test Problem

2 2
Zx—g+2y—‘2"=o 0<x<05 0<y<05

u(x,0)=0,u(x,0.5)=200x 0<x<05
u(0,y)=0,u(0.5,y)=200y 0<y<0.5

Exact solution is u(x, y)=400 xy

4. Conclusion

In Figure 2 surface indicates the exact solution
of Laplace equation while dots show the numerical
solution obtained using FEM. It is clear from the plot
that results obtained by FEM are very close to exact
solution.
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X Y FEM Exact Absolute
Solution Solution Error

0.0000 0.0000 0.000000 | 0.000000 | 0.000000
0.1000 0.0000 0.000000 | 0.000000 | 0.000000
0.2000 0.0000 0.000000 | 0.000000 | 0.000000
0.3000 0.0000 0.000000 | 0.000000 | 0.000000
0.4000 0.0000 0.000000 | 0.000000 | 0.000000
0.5000 0.0000 0.000000 | 0.000000 | 0.000000
0.0000 0.1000 0.000000 | 0.000000 | 0.000000
0.1000 0.1000 4,000000 | 4.000000 | 0.000000
0.2000 0.1000 8.000000 | 8.000000 | 0.000000
0.3000 0.1000 12.00000 | 12.00000 | 0.000000
0.4000 0.1000 16.00000 | 16.00000 | 0.000000
0.5000 0.1000 20.00000 | 20.00000 | 0.000000
0.0000 0.2000 0.000000 | 0.000000 | 0.000000
0.1000 0.2000 8.000000 | 8.000000 | 0.000000
0.2000 0.2000 16.00000 | 16.00000 | 0.000000
0.3000 0.2000 24,00000 | 24.00000 | 0.000000
0.4000 0.2000 32.00000 | 32.00000 | 0.000000
0.5000 0.2000 40.00000 | 40.00000 | 0.000000
0.0000 0.3000 0.000000 | 0.000000 | 0.000000
0.1000 0.3000 12.00000 | 12.00000 | 0.000000
0.2000 0.3000 24.00000 | 24.00000 | 0.000000
0.3000 0.3000 36.00000 | 36.00000 | 0.000000
0.4000 0.3000 48.00000 | 48.00000 | 0.000000
0.5000 0.3000 60.00000 | 60.00000 | 0.000000
0.0000 0.4000 0.000000 | 0.000000 | 0.000000
0.1000 0.4000 16.00000 | 16.00000 | 0.000000
0.2000 0.4000 32.00000 | 32.00000 | 0.000000
0.3000 0.4000 48.00000 | 48.00000 | 0.000000
0.4000 0.4000 64.00000 | 64.00000 | 0.000000
0.5000 0.4000 80.00000 | 80.00000 | 0.000000
0.0000 0.5000 0.000000 | 0.000000 | 0.000000
0.1000 0.5000 20.00000 | 20.00000 | 0.000000
0.2000 0.5000 40,00000 | 40,00000 | 0.000000
0.3000 0.5000 60.00000 | 60.00000 | 0.000000
0.4000 0.5000 0.800000 | 0.800000 | 0.000000
0.5000 0.5000 100.0000 | 100.0000 | 0.000000
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