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Abstract 

A Toeplitz graph is one whose adjacency matrix is a Toeplitz matrix. A Toeplitz matrix is also known as a 

constant diagonal matrix. This paper defines cubic Toeplitz graphs and establishes that the cycle discrepancy of 

a cubic Toeplitz graph is at most 1. That is 𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝐺) ≤  1, where G is a cubic Toeplitz graph. Further this 

bound is shown to be tight. 
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1. Introduction 

Cycle discrepancy was introduced for the first 

time in [1] as a graph invariant. The inspiration of 

this idea is from the discipline of discrepancy 

theory, which is a sub-area in Combinatorics. The 

discrepancy theory deals with the study of 

deviations from the absolute uniformity or in other 

words, irregularities. If we are given a set J and a 

set S of subsets of J, a key question in discrepancy 

theory is to divide the set J such that each element 

in S is divided as equally as possible. If we define 

a labeling, 𝛼: 𝐽 → {𝑙1, 𝑙2}, by assigning a label to 

each element of J out of two possible labels, say l1 

and l2, then, consequently each element in S will 

also get these labels to their elements. Note the 

absolute difference between number of elements 

having label l1 and number of elements having 

label l2 for each subset in S. The maximum value 

of absolute difference would be the discrepancy of 

the labeling α. For all possible such labeling we 

note the minimum value of discrepancy that can be 

achieved. The labeling which achieves the 

minimum is called the optimal labeling. The 

discrepancy of an optimal labeling is called the 

discrepancy of the set system (J, S). We call this 

quantity as discrepancy of J if the set S is 

understood or clear from the context. The set S, is 

also referred as the ground set and the set J as the 

collection of subsets of S. For a detailed overview 

of this area we refer the reader to [3, 6, 8, and 10]. 

A graph, 𝐺 =  (𝑉, 𝐸), is a pair of set of nodes and 

set of edges. The set, V, containing nodes of the 

graph can be taken as the ground set. A cycle in 

the graph can be viewed as a subset of nodes. Let 

us call CG, the set containing all the cycles in the 

graph G. The discrepancy of the set system (𝑉, 𝐶𝐺) 

is known as cycle discrepancy of the graph G and 

is denoted as 𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝐺). Due to the nature of the 

set system, the concept of cycle discrepancy has a 

graph theoretic flavor and mostly graph theoretic 

tools and techniques are used to investigate it. 

For a cubic graph on n nodes, it is proved in [1] 

that, the cycle discrepancy is tightly bounded 

by 
𝑛 + 2

6
. That means if a graph (having n nodes) is 

cubic then its cycle discrepancy can be at 

most 
𝑛 + 2

6
, further there exists a cubic graph which 

achieves this bound.  

The cycle discrepancy of three colorable graphs is 

investigated in [2] showing that cycle discrepancy 

of a three colorable graph is at most   232 n  

and there are such three colorable graphs which 

achieve this bound on cycle discrepancy.  

In this paper we define cubic Toeplitz graphs and 

show that the cycle discrepancy of a cubic 

Toeplitz graph is at most 1. That means if a cubic 

graph on n nodes is also a Toeplitz graph then the 

bound on cycle discrepancy improves from 
𝑛 + 2

6
  

to 1. 

The following section covers some required 

definitions and known results. In Section 3 cubic 

Toeplitz graphs are defined by means of necessary 

and sufficient conditions. Section 4 contains 

results about cycle discrepancy of cubic Toeplitz 

graphs. Finally Section 5 briefly concludes this 

work. 

2. Definitions and Preliminaries 

The graphs we are dealing with in this paper do 

not have multiple edges. They are loop less 

undirected graphs. We are using standard notation 

of graph theory mostly adopted from [5].  

A symmetric square matrix X of size 𝑛 × 𝑛 is a 

Toeplitz matrix if the value 𝑥𝑖,𝑗 = 𝑥0,|𝑗−𝑖| for 0 ≤

𝑖, 𝑗 ≤ 𝑛 − 1, hence, it is defined by only the values 

of the first row, as 𝑋𝑛 < 𝑝0, 𝑝1, 𝑝2, ⋯ , 𝑝𝑛−1 >, 

where 𝑝𝑗 = 𝑥0,𝑗 for 0 ≤ 𝑗 ≤ 𝑛 − 1. It should be 

noted that on a diagonal all values are the same, 

that is why it is also known as a constant diagonal 
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matrix. If 𝑝𝑗 ∈ {0, 1} for 0 ≤ 𝑗 ≤ 𝑛 − 1, then the 

resulting matrix can be interpreted as an adjacency 

matrix of an undirected graph on n nodes. If 

some 𝑝𝑗 = 0, we normally do not write it. In this 

way, to represent a Toeplitz graph on n nodes, we 

write 𝑇𝑛 < 𝑞0, 𝑞1, 𝑞2, ⋯ , 𝑞𝑘 >, for 0 < 𝑘 ≤ 𝑛 − 1, 

where 𝑞𝑖 is the diagonal containing 1’s and there 

are at most 𝑛 − 1 such diagonals as we are 

avoiding self-loops. 

A labeling, 𝜒, of a graph is to map set of nodes to 

the set {+1, −1}. We will simply use ‘ + ’ and ‘ − ’ 
instead of +1 and −1. For any subset, C, of nodes 

from a given graph G, define, 





Cu

uC )()(  . 

A cycle in a graph consists of a subset of nodes. 

Consider a set which contains all the cycles of a 

graph G, call it CG. The cycle discrepancy of a 

labeling, 𝜒, can be defined as: 

)(max)( Ccycdisc
GCC



 . 

The cycle discrepancy of a graph, G, represented 

as 𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝐺), can be defined as: 

)(min)(
},{:




cycdiscGcycdisc
V 

 . 

It is important to note that the cycle discrepancy of 

a bipartite graph is zero and any graph with a cycle 

discrepancy zero is bipartite. The cycle 

discrepancy of a graph is always greater than or 

equal to the cycle discrepancy of any of its sub 

graphs. Hence a graph containing an odd cycle has 

cycle discrepancy at least one.   

For a given graph, 𝐺 =  (𝑉, 𝐸), If a mapping,

},,{: bgrVf  , exists such that for any two 

nodes u and v which are connected, )()( vfuf  . 

If a graph, G, admits such a tri-coloring then it is 

called a 3-colorable graph. A tri-coloring divides 

the set of nodes into three classes. Each class has 

nodes of the same color. These color classes can 

also be described as, ),(1),(1 gfYrfX  and

)(1 bfZ  . “This tri-coloring can be 

characterized by permuting the colors of the 

partitions of set of nodes (color classes). Therefore 

we normally say that 𝑓 =  (𝑋, 𝑌, 𝑍) is a tri-

coloring of a given graph G” [2]. We assume here 

that Z is the smallest color class and X is the 

largest color class. 

We are using in this work, Lemma 5 from [1] and 

for the convenience of the reader it is reproduced 

here as Lemma 1 with few changes for clarity.  

Lemma 1: [Lemma 5 [1]] 

“Let 𝐺 =  (𝑉, 𝐸) be a K4-free, three-regular 

graph. Let 𝑐 =  (𝑋, 𝑌, 𝑍) be a tri-coloring of G 

such that each vertex z ∈ Z has at least one 

neighbor in X and at least one neighbor in Y. 

Define, 𝑘 = |𝑋| − |𝑌 | and 𝑞 = |𝑌| − |𝑍|. Then 

for the labeling 𝜌 we have, 

𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝜌) ≤
𝑛 + 2𝑘 − 2𝑞

6
.   ■ 

The Lemma 1 can be extended when 𝑘 = 0. We 

record this extension as Corollary 1.  

Corollary 1: 

If 𝑘 = 0, then for the labeling 𝜌 we have, 

𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝜌) ≤
|𝑍|

2
. 

Proof: 

As 𝑛 = |𝑋| + |𝑌| + |𝑍|, using Lemma 1 we have, 

𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝜌) ≤
𝑛 +  2𝑘 −  2𝑞

6
 

   =
3|𝑋| − 3|𝑌| + 3|𝑍|

6
 

   ≤
||𝑋| − |𝑌|| + |𝑍|

2
. 

 

Note that if 𝑘 = 0 then |𝑋| = |𝑌| hence, 

𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝜌𝑐) ≤
|𝑍|

2
.   ■ 

It is important to note that if we want a lower 

bound, B, on cycle discrepancy then we have to 

present a graph which shows the following 

property. For every labeling of the graph there is a 

cycle whose discrepancy is at least BL. On the 

other hand for upper bound, BU, a labeling has to 

be shown such that every cycle of the graph has 

discrepancy at most BU.   

3. Cubic Toeplitz Graphs 

A cubic graph is one in which every node has 

exactly three neighbors. We have already defined 

Toeplitz graphs in Section 2. Here we first give an 

example of cubic Toeplitz graph followed by a 

formal definition of the same.   

Recall the definition of Toeplitz graph from 

Section 2. As an example if we write 𝑇8 <
3, 4, 5 >, it would mean an adjacency matrix of 

size 8 × 8 with diagonal number 3, 4, and 5 

containing 1’s and all other diagonals contain 

zeros. The cubic Toeplitz graph, 𝑇8 < 3, 4, 5 > 

having eight nodes is shown in Figure 1 drawn in 
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three different ways showing three isomorphic 

versions. 

Now we define three regular or cubic Toeplitz 

graph, 𝑇𝑛 < 𝑥, 𝑦, 𝑧 >, on ‘n’ nodes with exactly 

three diagonals having ones, we assume 

throughout the text that 𝑥 < 𝑦 < 𝑧. 
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Figure 1: A cubic Toeplitz graph, 𝑇8 < 3, 4, 5 >, 

on eight nodes. (a) Circular version   

(b) Star version (c) Path version. 

Theorem 1:  

An undirected Toeplitz graph 𝑇𝑛=2𝑦 < 𝑥, 𝑦, 𝑧 > is 

cubic if and only if 𝑦 =
𝑛

2
 and 𝑥 + 𝑧 = 𝑛. 

Proof: 

(a) If y is less than 
𝑛

2
 then x would also be less than 

𝑛

2
 such that 𝑥 < 𝑦 <

𝑛

2
.  The resulting degree of 

node number 
𝑛

2
 will be greater than three. 

(b) If y is greater than 
𝑛

2
 then z is also greater than 

𝑛

2
 such that 

𝑛

2
< 𝑦 < 𝑧.  The resulting degree of 

node number 
𝑛

2
 will be less than three. 

From (a) and (b) it is clear that if 𝑦 ≠
𝑛

2
 then the 

graph cannot be cubic. In other words, if the 

Toeplitz graph is cubic then 𝑦 =
𝑛

2
. 

Note that diagonal number d contains 𝑛 − 𝑑 ones 

above the main diagonal. In a cubic Toeplitz graph 

y has contributed 
𝑛

2
 ones, because 𝑛 − 𝑦 = 𝑛 −

𝑛

2
=

𝑛

2
. In a cubic graph on n nodes the number of 

edges is 
3𝑛

2
, where, 𝑛 > 3. After the edges 

contributed by y, the remaining n edges have to be 

contributed by diagonals x and z collectively.  

(c) If 𝑥 + 𝑧 > 𝑛, then the edges contributed by x 

and z are: 𝑛 − 𝑥 + 𝑛 − 𝑧 = 2𝑛 − (𝑥 + 𝑧) < 𝑛.  

(d) If 𝑥 + 𝑧 < 𝑛, then the edges contributed by x 

and z are: 2𝑛 − (𝑥 +  𝑧)  >  𝑛.  

From (c) and (d) it is clear that if 𝑥 + 𝑧 ≠ 𝑛, then 

the graph is not cubic. In other words, if the graph 

is cubic then 𝑥 + 𝑧 = 𝑛. 

Conversely, now we show that if 𝑦 =
𝑛

2
∧ (𝑥 +

𝑧) = 𝑛, then the resulting Toeplitz graph is cubic. 

Note that while moving along a diagonal, row 

number and column number are changing 

continuously. As diagonal y is at 
𝑛

2
, it contributes 

exactly one to the degree of each node by 

connecting node number i to 
𝑛

2
+ 𝑖 , where 0 ≤ 𝑖 ≤

𝑛

2
− 1.  

Due to diagonal number x each node number i 

would get incremented if 𝑖 − 𝑗 = 𝑥 or 𝑗 − 𝑖 = 𝑥 

for 𝑗 = 0, 1, … , 𝑛 − 1. The degree of node number 

0,1, … , 𝑥 − 1 and 𝑛 − 𝑥 + (0), 𝑛 − 𝑥 +
(1), … , 𝑛 − 𝑥 + (𝑥 − 1) is incremented by exactly 

one, while the degree of node number 𝑥, 𝑥 +
1, 𝑥 + 2, … , 𝑛 − (𝑥 + 1) is incremented by exactly 

two. Each such node numbered p, getting a degree 

increment of exactly two would be connected to 

𝑝 + 𝑥 and 𝑝 − 𝑥. i.e. (𝑝 + 𝑥) − 𝑝 = 𝑥 and 𝑝 −
(𝑝 − 𝑥) = 𝑥. 

Due to diagonal number z first 𝑛 − 𝑧 nodes are 

connected to last 𝑛 − 𝑧 nodes incrementing their 

degree by exactly one. Note that 𝑛 − 𝑧 = 𝑥, and 

these are exactly those nodes which got only an 

increment of one in their degree by diagonal x.  

Hence each node has degree exactly three by 

collective contribution of diagonals x, y, and z, 

showing that it is a cubic graph.  ■ 
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4. Cycle Discrepancy of Cubic 
Toeplitz Graphs 

In this section we will discuss the connectivity of 

cubic Toeplitz graphs, followed by their cycle 

discrepancy.  

Theorem 2: 

A three regular Toeplitz graph 𝑇𝑛 < 𝑥, 𝑦, 𝑧 >, is 

connected if and only if 𝑔. 𝑐. 𝑑(𝑥, 𝑦) = 1.  

Proof: 

Note that 

 𝑔. 𝑐. 𝑑(𝑥, 𝑦, 𝑧) = 𝑔. 𝑐. 𝑑(𝑥, 𝑦), 

Because  

𝑦 − 𝑥 = 𝑧 − 𝑦. 

Let us call 𝑦 − 𝑥 = 𝑑, then 

𝑔. 𝑐. 𝑑(𝑥, 𝑦, 𝑧) = 𝑔. 𝑐. 𝑑(𝑥, 𝑥 + 𝑑, 𝑥 + 2𝑑) 

    =  𝑔. 𝑐. 𝑑(𝑥, 𝑑) 

And,    𝑔. 𝑐. 𝑑(𝑥, 𝑦) = 𝑔. 𝑐. 𝑑(𝑥, 𝑑). 

As the graph is cubic, 𝑛 = 2𝑦. Assume 

that 𝑔. 𝑐. 𝑑(𝑥, 𝑦, 𝑧) = 𝑘, then we can say that 

𝑥, 𝑦, 𝑧 and n are multiples of k.  

Reachability in a graph is an equivalence relation. 

Every node number in set {𝑝𝑥, 𝑞𝑦, 𝑟𝑧} 𝑚𝑜𝑑 𝑛 will 

be reachable from node number zero where p, q 

and r, are positive integers. Note that px, qy and rz 

are multiples of k and all these nodes make an 

equivalence class C0. If there are node numbers 

which are congruent to one mode k, they are not in 

class C0 and in that case the graph is not 

connected. Further note that there will be k 

equivalence classes which are not reachable from 

each other.  

If 𝑔. 𝑐. 𝑑(𝑥, 𝑦) = 1, we know that 𝑛 = 2𝑦, 

then  𝑔. 𝑐. 𝑑(𝑥, 𝑛) ∈ {1, 2}.  

If 𝑔. 𝑐. 𝑑(𝑥, 𝑛) = 1, then node number zero will be 

reachable to nodes numbered {𝑥, 2𝑥, 3𝑥, … , (𝑛 −
1)𝑥} 𝑚𝑜𝑑 𝑛, as 𝑛𝑥 ≡ 0 𝑚𝑜𝑑 𝑛. Hence the graph 

is connected. 

If 𝑔. 𝑐. 𝑑(𝑥, 𝑛) = 2, then there will be two 

equivalence classes, one with even numbered 

nodes and other with odd numbered nodes. Further 

we can observe that zero is connected to y which is 

odd. Hence graph is connected.  ■ 

Theorem 3: 

A connected cubic Toeplitz graph 𝑇𝑛 < 𝑥, 𝑦, 𝑧 >, 

is bipartite if 𝑔. 𝑐. 𝑑(𝑥, 𝑛) = 1 and y is an odd 

number.  

Proof: 

As graph is cubic so n is even. Note that x is an 

odd number because 𝑔. 𝑐. 𝑑(𝑥, 𝑛) = 1. We can 

arrange all the nodes on a cycle by using only the 

edges of diagonals x and z because x is relatively 

prime to n and 𝑧 = 𝑛 − 𝑥. As this is an even cycle, 

it is bipartite.  

Now put the edges of diagonal y which is an odd 

number and hence it will connect nodes which are 

at an odd distance with each other on the cycle. 

Hence each y edge will be across partitions.     ■ 

Theorem 4: 

A connected cubic Toeplitz graph 𝑇𝑛 < 𝑥, 𝑦, 𝑧 >, 

has cycle discrepancy one if 𝑔. 𝑐. 𝑑(𝑥, 𝑛) = 1 and 

y is an even number. 

Proof: 

All the nodes can be arranged on a cycle as x and n 

are relatively prime. Let us define a labeling 𝜌 in 

the following manner. Assign alternating labels to 

the nodes on the cycle skipping node number y 

and z. Assign labels to the skipped nodes opposite 

to the majority of their neighbors. Node number z 

will get the same label as node number zero and 

node number y will get the label opposite to node 

number zero. Now let us elaborate this labeling 

while dividing the graph into three partitions.  

Define three partitions X, Y, and Z such that X 

contains only positively labeled vertices and Y 

contains only negatively labeled vertices. The 

partition Z may contain vertices of both kinds. Put 

node number zero in X partition and node number 

x in the Y partition. In this way we put node 

number 2𝑖𝑥 𝑚𝑜𝑑 𝑛 in partition X, and (2𝑖 +
1)𝑥 𝑚𝑜𝑑 𝑛 in partition Y, for 𝑖 = 0, 1, 2, … (𝑦/
2) − 1. The next node on the cycle is node 

number 𝑦𝑥 𝑚𝑜𝑑 𝑛, we put it in Z and node number 

𝑦𝑥 + 1 𝑚𝑜𝑑 𝑛 in partition X. Now put node 

number (2𝑖 + 1)𝑥 𝑚𝑜𝑑 𝑛 in partition X for 𝑖 =

(
𝑦

2
) + 1, (

𝑦

2
) + 2, … , (

𝑦

2
) + (

𝑦

2
− 2) and node 

number 2𝑖𝑥 𝑚𝑜𝑑 𝑛 in partition Y for 𝑖 =  (
𝑦

2
) +

1, (
𝑦

2
) + 2, … , (

𝑦

2
) + (

𝑦

2
− 1). The last node 

numbered (2𝑦 − 1)𝑥 𝑚𝑜𝑑 𝑛 which is congruent to 

z is placed in partition Z. 

The node numbered (2𝑦 − 1)𝑥 𝑚𝑜𝑑 𝑛 is 

congruent to z and is connected to node number 

zero which is positive. The other two neighbors of 

this node are (𝑦 − 1)𝑥 𝑚𝑜𝑑 𝑛 and 2(𝑦 −
1)𝑥 𝑚𝑜𝑑 𝑛 both of which are negative. Hence this 

node is labeled positive.  
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The node numbered 𝑦𝑥 𝑚𝑜𝑑 𝑛 is congruent to y 

(because x is odd and 𝑥 − 1 is even hence (𝑥 −
1)𝑦 is a multiple of n so xy leaves a remainder y 

when divided by n) and is connected to zero which 

is positive. Node number y is also connected to 

two nodes which are adjacent to it on the cycle, 

one of which is positively labeled and the other is 

negatively labeled. Hence the node number 

𝑦𝑥 𝑚𝑜𝑑 𝑛 is labeled negative.  

Observe that both the nodes in Z have a neighbor 

in X and a neighbor in Y, further, |X| = |Y|, so we 

can apply Corollary 1. 

 

                 𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝜌) ≤
|𝑍|

2
 = 1.   (1) 

 

Now for the other side we note that: 

0~𝑥~2𝑥~3𝑥~ … ~(𝑦 − 1)𝑥~𝑦𝑥~0 (𝑚𝑜𝑑 𝑛), is 

an odd cycle in the graph as y is an even number. 

Hence 

 

                        𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝑇𝑛) ≥ 1.                        (2) 

 

Combining both Eq. 1 and Eq. 2 we conclude that: 

 

𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝑇𝑛)  = 1.            ■ 

Theorem 5: 

A cubic Toeplitz graph 𝑇𝑛 < 𝑥, 𝑦, 𝑧 >, is either 

bipartite or has cycle discrepancy one. 

Proof: 

If the graph  𝑇𝑛 < 𝑥, 𝑦, 𝑧 >, is connected then 

𝑔. 𝑐. 𝑑(𝑥, 𝑦) = 1 and 𝑔. 𝑐. 𝑑(𝑥, 𝑛) ∈ {1, 2}. The 

case when 𝑔. 𝑐. 𝑑(𝑥, 𝑛) =  1, by Theorem 3 and 

Theorem 4, 𝑇𝑛 < 𝑥, 𝑦, 𝑧 > is either bipartite or it 

has cycle discrepancy one.  

The case when 𝑔. 𝑐. 𝑑(𝑥, 𝑛) = 2, both x and n will 

be even. If we consider only diagonals x and z, all 

even numbered nodes will be making one cycle 

and odd numbered nodes will be making another 

cycle as shown in Figure 2. The 
𝑛

2
 edges due to 

diagonal y will be joining these cycles. Next we 

define a labeling, 𝜌, to establish a bound on the 

cycle discrepancy. 

Consider the cycle containing node number zero 

and label it with alternating labels starting with 

node number zero (positive label) and then node 

number x (negative label). The last node in this 

cycle will be node number 𝑛 − 𝑥 which will get 

the same label as node number zero. Now looking 

at 
𝑛

2
 edges going across the two cycles, label the 

cycle containing odd numbered nodes with labels 

opposite to the even numbered neighbors. At this 

stage we have exactly two edges connecting the 

nodes with same label. One edge will be between 

node number zero and 𝑛 − 𝑥 and the other edge 

will be between node number 
𝑛

2
− 𝑥 and 

𝑛

2
. 

 

n-2x n-x 0 x 2x

y-2x y-x y y+x y+2x

+ + +

++ ---

--

 

Figure 2: The case when 𝑔. 𝑐. 𝑑(𝑥, 𝑛) = 2, then 

all even numbered nodes will be 

making one cycle and odd numbered 

nodes will be making another cycle. 

The node numbers should be treated 

modulo n. 

Now let us partition the set of nodes into three sets 

as following. 

𝑃1  =  {𝑁𝑜𝑑𝑒𝑠 𝑤𝑖𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑙𝑎𝑏𝑒𝑙}/𝑃3 
𝑃2  =  {𝑁𝑜𝑑𝑒𝑠 𝑤𝑖𝑡ℎ 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑏𝑒𝑙}/𝑃3 
𝑃3  =  {𝑛 − 𝑥, 𝑛/2} 

Note that node number zero and 𝑛 − 𝑥 have 

positive label whereas node number 
𝑛

2
− 𝑥 and 

𝑛

2
  

have negative label. Note 𝑛 − 𝑥 and 
𝑛

2
 are not 

connected with each other and have different 

labels. Further both of these nodes have a neighbor 

in 𝑃1 and a neighbor in 𝑃2. We can apply Corollary 

1 while observing that |𝑃1| = |𝑃2|.  

 

𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝜌) ≤  (|𝑃3|)/2 = 1.               (3) 

 

Both the cycles created by only x and z edges have 

odd number of nodes because 𝑦 =
𝑛

2
 is odd. Hence 

 

𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝑇𝑛) ≥ 1.          (4) 

 

Combining both Eq. 3 and Eq. 4 we conclude that: 

𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝑇𝑛) = 1. 

Lastly if the graph is not connected then 



Pak. J. Engg. Appl. Sci. Vol. 22, Jan., 2018 

19 

 

𝑔. 𝑐. 𝑑(𝑥, 𝑦) will be greater than one. Assume that 

𝑔. 𝑐. 𝑑(𝑥, 𝑦) = 𝑘, where 𝑘 > 1 then the graph will 

consist of k components and each component is 

isomorphic to 𝑇𝑛

𝑘
<

𝑥

𝑘
,

𝑦

𝑘
,

𝑧

𝑘
> which is a connected 

cubic Toeplitz graph with 𝑔. 𝑐. 𝑑 (
𝑥

𝑘
,

𝑦

𝑘
) = 1. 

Hence each component is either bipartite or has 

cycle discrepancy one. Hence the overall graph is 

either bipartite or has cycle discrepancy one.   ■ 

The results presented in this section are 

summarized in Figure 3. The root node tells that 

the given graph is cubic Toeplitz graph and if it is 

not connected the argument is covered in Theorem 

5. For the connected graphs, if 𝑔. 𝑐. 𝑑(𝑥, 𝑛) = 2, 

the argument is presented in Theorem 5. 

Otherwise 𝑔. 𝑐. 𝑑(𝑥, 𝑛) = 1 and it splits into 

further two cases covered in Theorem 3 and 

Theorem 4. 

 

Is g.c.d (x, y) = 1?

Tn < x, y, z >

Graph is 

unconnected
Graph is 

connected

No Yes

g.c.d (x, n) = 1

g.c.d (x, n) = 2

cycdisc ( Tn < x, y, z >) = 1

(Theorem 5)

Yes

cycdisc ( Tn < x, y, z >) = 1

(Theorem 4)

Tn < x, y, z > is bipartite

(Theorem 3)

No

Is y even? Find g.c.d (x, n) 

 

Figure 3: Completeness of argument for different 

cases with relevant theorem numbering 

is shown. 

Conclusions 

In this paper, cubic Toeplitz graphs are defined 

and further tight bound on their cycle discrepancy 

is presented. It is shown that the cycle discrepancy 

of a cubic Toeplitz graph is at most 1. Further 

there are cubic Toeplitz graphs containing odd 

cycle(s), making the stated bound tight.  

At the end, we present some open problems in this 

area. 

Problem 1: What is the bound on cycle 

discrepancy of a 4-regular Toeplitz graph? 

Problem 2: What is the bound on cycle 

discrepancy of a Toeplitz graph with m nonzero 

diagonals in its adjacency matrix? 
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